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of behavior can be deduced from the entropies of the "atoms", and outlines
the solutions to certain methodological problems involved. Examples of the
method are given from the fields of attention and skills, including the
representation of the effects of practice on a 7-degree-of-freedom perceptual
motor skill involving a complex man-machine interface. Further analysis i
and development of the technique is being carried out and will be reported

subsequentlyj
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I Abstract

3 Recent developments of classical information theory

by Conant and Ashby have given rise to a number of techniques by

5 which the behaviour of a complex system can be analysed. Even in the

absence of any information about the identity of the variables measured

it is possible to detect which parts of the system are closely coupled

J and which independent. The metrics of the variables can be mixed,

(nominal, ordinal, etc.) and the method is particularly suited to

J Idynamic systems. This paper discusses how the structure of the

"molecules" of behaviour can be deduced from the entropies of the

"atoms", and outlines the solutions to certain methodological problems

involved. Examples of the method are given from the fields of attention

and skills, including the representation of the effects of practice on

J a 7-degree-of-freedom perceptual motor skill involving a complex man-

machine interface. Further analysis and development of the technique

is being carried out and will be reported subsequently.Ii
I

U I!
!
I



* .. _ .. . . ..... ....... ... .I

Acknowledgement

I This work was supported by a contract from the Office of

Naval Research, Contract No. N00014-77-C-0256, for work on

Supervisory Control.

My thanks are particularly due to Dana Yoerger who

wrote the computer programs which collected data from the teleoperator

and performed the information theory analyses, to Professor Roger

Conant who so willingly gave his time to discuss the application of

his methods to these experiments, and to Professor Tom Sheridan
IoI

who arranged for me to work in the Han-Machine Systems Laboratory

at M.I.T.

AceI3o
DI1 A

Aco

'IZ



I iii

I
I Contents

I Introduction ... ............. ...

Methodological Problems ... ........

I The amount of data required .... ram

The quantizing problem ..........

Windowing and timing relations . . .

Methods of displaying structure. . .

Tests of statistical significance. 1
! Examples of analysis .............

Tasks of increasing complexity... L

Effects of practice (I) ..........

Effects of practice (2) ...... ..

Static analysis of attention data. . C

jVerification f proposed structures

using "molecular" transmission

Discussion of results .... ..........

References .... ............... . .

Appendix A: Computer program for collecting

teleoperator data ........

Appendix B: Computer program for calculation of

transmissions, entropies, and

statistics ... .........

APPENDIX C: Effects of Quantizing level on

Estimates of Structure ........

I



i Introduction

J Experimental psychology has developed a sophisticated

set of experimental designs for the analysis of behaviour when the

Jexperimental paradigm involves three or fewer variables, trials and
variables are independent, and the response made by the subject does

not interact with the subsequent history of the experiment. It has

been much less successful in attacking dynamic systems, and systems

with many variables. And yet complex dynamic systems are if anything

jthe norm in what is usually called the "real world" of manual and

supervisory control and sophisticated man-machine systems. Rasmussen

a$ has pointed out the differences forcefully:

"Laboratory tasks tend to have a well-defined goal or
target. Payoff matrices are artificial and have low values.
The subject is controlled by the task. Task instructions are
specific. Task requirements are stable. Subjects are relatively
untrained. By contrast in "real" tasks only a (sometimes vague)

*overall performance criterion is given and the detailed goal
structure must be inferred by the operator. Task instructions

* are inferred by the human operator from rather general commands
about how to perform the task. The task may vary as the demands
of the system vary in real time. Operating conditions and the
system itself are liable to change. Costs and benefits may have
enormous values. There is a hierarchy of performance goals. The
operator is usually highly trained, and largely controls the task,
being allowed to use what strategies he will. Risk is incurred in
ways which can never be simulated in the laboratory".

Rasmussen 1979.

.
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Quite new methods seem appropriate for such real world

systems, and even the methods of classical and optimal control theory

have severe limitations when they are applied to situations in which

many parts of the system are non-linear, some variables may be discrete

and others continuous, and variables with different orders of metric

properties are involved.

In the last few years researchers in the area known as

Systems Science have developed a number of methods which look promising

as the basis for tackling such complex dynamic systems. This report

is an introduction to their use for the analysis of man-machine systems.

They purport to have the following advantages over more common techni-

ques:

1. Variables with different metrics from nominal to

ratio can be compared directly.

2. Certain kinds of correlation which traditional methods

fail to reveal can be detected (for example curvilin-

ear regression). i

3. The results are "structure orientated". That is, the

very nature of the technique tends to make the user

think in terms of the system being investigated as

made up of a number of subsystems which are inter-

connected, and those subsystems in turn being perhaps

decomposable into their subsystems, and so on. The

method leads directly to an appreciation of the

"molecular" structure of system behaviour and the

timing dynamics of the variables.
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1 4. Absolutely no a priori knowledge is needed about

the relation between the variables, or even

which are input and which output variables.

I The total number of variables which may be

involved must be known, and their identities,

J although the method will even show whether an

important variable has been omitted. A rough

Iknowledge of the bandwidth of the system is

useful although not absolutely necessary.

One of the fundamental ideas involved is that of "constraint"

among the variables of a system. We describe a system as a set of

interacting subsystems which may be decomposable into other subsystems

and ultimately into primitive "atomic" variables. A primitive

variable which cannot be further decomposed will here be called an

"atom" of behaviour, and combinatioas of atoms (subsystems) will

be called "molecules" of ehaviour. To discover the structure of

behaviour is to dicsover which atoms are combined into molecules,

and which molecules are combined to make larger molecules. If an

*7 atom is coupled to another atom, (or an atom to a molecule, or

a molecule to a molecule) one will causally affect the other.

Evidence that two subsystems are coupled is that one affects the

value taken by the other - hence "constraint".. If one molecule

I can take any value regardless of the values taken by the other

then they are independent and no information passes between them.

If on the other hand one molecule does affect another, then it

4-~
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must inform the other of its value and in so doing constrain the

values taken by the other. Information passes from one to the

other. The problem of determining the existence, strength and

direction of coupling effects between parts of a system can then

be seen as the problem of determining the amount of information

transmitted between them, and hence we can formulate the problem

of identifying structure in terms of the mathematical theory

of communication, or "information" theory. As we will see

in a moment, that theory was originally defined in terms of

"transmitters" and "receivers". But the mathematics are simply

the mathematics of the relations'between sets, and we do not need

to identify the sets with any particular physical entity in order

to apply the formulae. All we require are variables whose values

can be related. Information theory is then a natural starting

point for the analysis of structure.

Shannon (1946) in his classical work on the mathematical

theory of communication showed how the flow of information from

a transmitter to a receiver over a channel might be defined and

measured, and introduced the concepts of entropy and transmission.

The transmitter sent suitably encoded signals over a (usually

noisy) channel to be identified by a receiver which decoded them.

Defining the message uncertainty in terms of averages over signal

probabilities, Shannon defined the entropy of a source as

H(A) - E pAi log 2 PAi (I)
i

where p Ai is the probability of occurrence of the ith symbol in the
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Iset of symbols A. Similarly the entropy of the messages at the

receiver, B is

H(B) = - PBj log 2 PB.

I and the average transmission between A and B is given by

T(A,B) = H(A) + H(B) - H(A,B) (2)

l where

H(A,B) - Zpi j  log2 Pij
iJ

The calculations are usually taken from a table giving

j the joint frequency of occurrence of symbols, as shown in Figure (1).

I OUTPUT

a b c d e

INPUT a nala nbia - - iela n Aa

A
b n alb nAb

c NAc

d I Ad
n -

eae ele NAe

nBa nB n in N
7b C dj e

Figure 1.

Frequency Counts for Transmissions

a/b the number of times a occurred at the receiver when b occurred

at the transmitter, "frequency of a given b"

I



n A the number of times transmitter A sent symbol b

A
the total number of symbols transmittedN -

(n + n + ... n )=E (n + .. nBa e a e

Pi = n A./N

pj = n IN
B.J

pij - nijj/N

Although it is usual to compute H and T from probabilities,

we will here use frequencies, since to do so has computational advantages

at later stages in the analyses. We therefore have

H(A) = log 2N - l nilog 2ni  (3)
N

H(B) = log2 N - Ifljg92n. (4)N j lgn 4

H(A,B) = log2 N - logn.
102 N .. ij g2 .. (5)

and T = H(A) + H(B) - H(A,B) as before.

Note that T = 0 if and only if A and B are completely statistically

independent, and that T is mathematically symmetrical,

H(A) + H(B) - H(A,B) = T = H(B) + H(A) - H(B,A)

which means that from the data alone it is impossible to tell which is

transmitter and which receiver, which source and which sink, even when

the transmission between them has been calculated.

Howe-.er, it also follows from that that we do not need to

know which is source and which is sink in order to detect the presence

of coupling between two variables. Without any knowledge of the physical

embodiment of the variables structural relations can be discovered, and

are represented by the existence of significant statistical relationships

between variables. (Obviously in the end we hope to argue to the
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appropriate physical realisation of the mathematical relations).

We need have no data or information about a system other

than the values taken by its variables at different moments in order to

deduce its structure. Calculating transmission between variables will

tell us which are tightly coupled, and it is then up to us to deduce

the physical or psychological meaning of the coupling.

Note that from Equations (1) and (G) the value of T cannot

be greater than the smaller of H(A), H(B). That is,

T < min ( H(A), H(B) ) (6)

In order to compare the strength of coupling between different sets

of variables whose minimum entropies may be different it is therefore

useful to normalise the transmission with respect to the maximum

possible value of T, so that the relationship is now the proportion of

total available information which is transmitted. We therefore define

T* - T/min ( H(A), H(B) ) (7)

where 0 < T* < 1 for all T,A,B.

As an example of the direction our line of argument is

going, consider the following data, collected some time ago in an

experiment on selective listening:

B C D
0 1 0 1 0 1

0 153319 0 183 98 0 98 ,142AAA

1 1 317 2881 1 02+2837

C D D
0 1 0 1 0 1

B 015 129 B0 189 51 C0 1 21 119

1 320 12878 1 283 2956 1 60 3079

3Table 1.

Contingency Tables for relations between four variables.

.. . I !. . . .. .. . . . . . . . . . . . . . . . . . . . . ... . .. . ... |B . . . ... . .. . . . ... . . . . . . ... . ..'.. .... . -
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Without knowing anything about the nature of the variab-

les A,B,C or D we compute all the possible transmissions, T(A:B),

T(A:C) . . . T(C:D). After normalising we obtain

T*(A:B) = 0.043 T*(B:C) = 0.151 1.
T*(A:C) = 0.222 T*(B:D) = 0.340

T*(A:D) = 0.063 T*(C:D) = 0.197

which can be expressed in a digraph thus:

A .C

o '3 f.

Figure 2

Digraph of transmissions for

attention data

The double ended arrows indicate that we do not know which

variable is source and which sink in each relation. It is clear that

the most important couplings are between A,C and B,D, although there

is also a moderate relation between C,D and B,C. These close couplings I
can be thought of as the behavioural "molecules" of the system, in

which the individual atomic variables play a part.

We may now explicitly acknowledge the fact that the terms

"transmitter" and "receiver" are perhaps less generally useful than

"source" and "sink", since the former pir have too strong connotations [:

about the nature of the variables. We should also note that a sink

for one relation can be a source for another. In cases such as the data

we are now considering the presence of double headed arrows means that

neither partner in the relation can be unequivocally identified as a
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VI
source or sink purely from the data. We shall later see that there are

ways to handle the data such that this ambiguity disappears, and

sources and sinks can be identified even without recourse to knowledge

I about the physical nature of the system.

JIn the present case we can identify some of the sources

and sinks by recourse to such a physical interpretation. Variables A

Iand B were two pure tone trains which were presented binaurally to a

listener, A being high pitched and B being low pitched. Each was a

I binary valued variable, each tone being either 60 or 6 dB intensity.

Variables C and D were the binary valued responses made by the listener,

who pressed one of two buttons for the high pitched signals, and one

of two other buttons for the low pitched signals, depending on whether

he judged the signal to be louder or softer of the two. The digraph

therefore shows that each input is the main source of its correspond-

ing response ({A,C}, {B,D}),that there is some cross talk from the

lower pitched signal to the response to the higher pitched signal

({B,C}) and that there is some cross talk between the responses ({C,D}).

Since responses do not cause stimuli, we can conclude that causality

must flow from A and B to C and D, but we cannot be sure which of the

responses is source and which sink, since there is no logical reason

to ascribe an assymetry to the relation.

Up to this point the development of the method is similar

to that suggested some years ago by Garner and Morton (1961), although

they did not use normalised transmissions, nor digraphical represent-

ations. We will now, however, follow Conant in developing these methods

I considerably further, showing how to detect "molecules", their structure,

and interaction as a basis for understanding the behaviour of
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multivariate interconnected dynamic systems.

Table 2 shows some data from a paper by Conant (1972).

The data are taken from a simulation, and show the first few samples

of a very long sequence (N -1000). For expository purposes we

assume with him that each variable can take one of three values

(Q - 3), and that the three values of each variable are equiprobable.

TIIIE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

X1  1 1 3 3 3 2 2 1 1 2 2 1 1 2 2

X2  1 1 2 2 1 1 1 2 2 2 1 1 2 2 2

X3 1 3 3 3 3 3 2 2 1 3 2 2 1 3 2 f
X4  1 2 2 1 1 1 2 2 2 1 2 2 2 2 1

X 5  1 1 2 1 1 1 1 2 1 2 2 1 2 1 2

Table 2.

The first 14 samples of Conant's data

As already implied, we will call individual variables

"atoms" and groups of variables "molecules" when they are coupled.

The maximum entropy of each atomic variable is, by-Equation (3)

H(XI) E log 100-n i
i) -121 1000 i 02

which, for equiprobable values, is
1 "t 0l00 1°g2- t )

H(Xi) - log21000 - 1 3. l3og

= + 1.585 bits.

AU variables are measured at each instant, t - 1, t - 2,

t - 1000. j
The steps in computing T* as we have defined it above are now

I-,



I 11

1 1. Choose a variable, say variable X

2. Note its range of values (1,2,3).

3. Make a frequency count of the occurrences of those

values (n1 , n 1  29 ).

4. Compute the series of nlog2ni terms for each value.

5. Compute H(X1) from Equation (3).

6. Similarly compute H(X2) . ... (X5)

7. Construct the contingency matrix showing the joint

occurrences of (n n2), (n , n2 ) and so on andii 9 2 1 22from them compute H(X1 ,X2 ) etc. for all pairs.

8. Compute T and hence T* for all pairs, T*(X :X2)

. . . T*(X 4 :X5).

9. Display the couplings and their magnitudes on a

digraph.

We now have an analysis of the static system, displaying which atoms

are coupled to which other atoms so that their values at least partly

determine each other's simultaneous values.I Let us now assume that the number of measurements taken

of each variable is sufficient that the loss of a few values at the

beginning or end of the record will not materially affect our estimate

of the frequency of occurrence of values and that therefore we can

perform the equivalent of the traditional auto- and cross-correlation

on the data by measuring the contingencies of occurrence with a time

I delay between the moments at which the values are measured.

We note that in general if we wish to discover the

organisation of a complex multivariate dynamic system we will need

to know how the value of one variable at time t affects the value of

e
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the same and other variables at time (t + dt). (The latter will be

called t' henceforth for notational convenience). The appropriate

value of t' will depend of course on the physical, physiological, and

psychological properties of the man-machine system, since it is

characteristic of causal relations that their effects take some time

to propagate, due to transport delays, integrations, loop delays,

etc... We saw earlier that when we measure the transmission between

two variables whose values were sampled simultaneously we cannot

deduce from a high T* which variable is forcing the other or whether

both are being forced by a third unknown variable. But when t' 0 0

we can reasonably assume that in many cases the later value is caused by

the earlier value (or that both are caused by a third variable). At

least the later variable cannot be causing the observed value of an

earlier variable. (By earlier variable we mean the one whose value

is measured at t, and by the later variable the one whose value is

measured at t').

Thus by measuring the T* between variables one of whose

values is delayed by dt and sampled at t' we can discover correlational

and causal connections which define the "molecules" of behaviour.

We now quote an extensive passage from Conant (1972) which summarises

the method very clearly. (His notation is slightly different from

ours, but no confusion should result).

"We assume a set of K primary variables, not necessarily metric,

each of which has been observed once every "standard time increment"

for N increments, giving a total of K N observations. With each

primary variable is associated a derived variable X, 1 < j < K, whose

values are taken to be the positive integers from 1 through M

(finite) for notational convenience. If the primary variable is not

L
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metric, these integers represent its categories, and if the primary

variable is metric, these integers represent its values, or ranges of

Jits values if it is a continuous variable. Categories or values must

be grouped or ranges quantized so as to make M reasonably small; that

matter and limits on the "standard time increment" will be discussed

in more detail further on.

The variablesX1 may be grouped into sets; no confusion results

if in this case we let Si denote the setfXJ1 , XJ2 ...... X.4 so

grouped and also the vector variable (Xjl, X 2  .... Xjn) whose

components comprise the set. When necessary , reference will be made

to values at different times by superscripts or primes; Sk denotes

at the kth measurement, (Xi, Xi) is a vector variable whose components

are Xi measured at two successive time increments, and so on.

It is well known that the entropy of X1, denoted H(X1), is a

reasonably good measure of the nonconstancy or variability of X

H(X1) is calculated from the observations on X by the following

formula:.H

i-l

in which n1 is the observed number of occurrences of the event tX) = I

and Z M ( n)= N. If the events occur-with definite probabilities
i= 1

pl' then H(X 1)=2(Ahp1 as N -- oo and (la) can be thought of as am

empirical estimate of the true entropy; however, we do not need to

assume the existence of the pi's in what follows. All quantities

discussed in this correspondence, as well as the relations "statistical

jindependence" and "statistical dependence", are interpreted as estimations

based on the observations over a finite time span.

The entropy of Sj = (XJ1 , AJ2 . .. .. ,X j ) is denoted by H(S1 ).

It is a nonnegative measure of the total amount of activity or variability

in the set Si, and it is calculated by a formula similar to (1A):

" 1

H(Sj) = los 2 N - 1 Zn~log2 nt (lb)T I4 0

I
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in which, however, nL is interpreted as the number of occurrences

of the ith possible value of the vector S . As before, n, - N.

The entropy of the union of two sets Si and S is denoted by H(SiSj),

and so forth.

The observed transmission between Si and S is denoted T(Si:Sj)

and is defined as follows:

T(S:S )  H(Si) + H(SI) - H(SiSj) (2)

This is a nonnegative measure of the strength of the relation between
k k

S and S.; it is zero if and only if Sk and S are statisticallyi i i
independent (when averaged over all k) [5: pp. 41-43], and it is a

maximum (equal to min 'H(Si), H(Sj ) if and only if one vector
k

variable is strictly dependent upon the other that is, S is a function

of S for all k < N, or vice versa. The generalization of (2) is

as follows:

)S S - SS(3)

This is a measure of the total constraint holding between, but not

within, the sets S through S
1 m

Simultaneously measured variables are implied unless a contrary

indication is given by primes or superscripts. Thus T(Si:Sj) is a

measure of the strength of the relation between S and S when
I i J

observed simultaneously; T(Xi:X) measures the effect of Xi on X

one time increment later, etc. With regard to T(Xi:Xi), note that

in observations over N time increments one would obtain N samples of

but only N - 1 samples of X and (XiX ). Since for statistical

validity one must have an equal number of samples from each variable,

the last sample of Xi would not be used, and all entropies would be

calculated from N - 1 occurrences.

Entropies and transmissions have been used for some time as

measures of variability and relatedness, respectively, and their

properties are well known. The notation used in this correspondence is

consistent with that of Ashby [6], who has developed many identities

relevant to the calculations suggested here.

The usefulness of T( ) in the decomposition of complex systems

is suggested by Simon's statement quoted earlier. Suppose a system is

in fact "nearly decomposable" into subsystems Sits2. (implying a

partition of all variables in the system; then one would expect that

the constraint holding betwe the subsystems over a short time span

!1
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would be weak compared to the constraint within them. If the timeI Iincrement is chosen properly (on the order of the time constants of

the variables and short compared with time constants of subsystem

interactions), the constraint holding over one time increment within

the Jth subsystem S.... l.X2 ..... X will be measured reasonably

well by T w, defined as

T - T(X 1 :X X 1 :X -x I ...... :X )m
W1 J1 * J2 J2 JM1 jm

since this transmission measures the nonindependence of all variablesJ in the subsystem over the time increment. The strength of the relation

betwe the ith and jth subsystems over one time increment is measured

by Tbij , defined as

STbij - T(<Si'Sj> : <Si'Sj

and the constraint between all subsystems over one time increment is

measured by Tb:

Tb - T(<SIS 1'> : <SS 2' <Sn'Sn'> )

Tb in an upper bound for Tbij

In a nearly decomposable system Tbij is small compared to Ti

t ,for all i and J, and in addition Tb is small compared to 7JT

the calculation of these transmissions thus allows verification of a

proposed grouping of variables into subsystems.

The question remains, how does one refer a proposed grouping from

the observations? A reasonable measure of the effect of Xi on X one

time increment later is normalized transmission ti

t = .T(X :X)
t H(X a

levels in Xi and X, and the normalization indicated largely eliminates

T(1X' ssrnl fetdb h ubro aeoiso unu

l1
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that effect. The result, tij, is always between zero and unity,

zero if and only X and X' are statistically independent and unity

if and only if Xj' is strictly determined by Xi. Although odd

situations can be contrived in which it works poorly, one reasonable

procedure for generating a grouping of variables into subsystems is

to calculate the t j for all i and j and then deduce, by starting

with the largest value and working down, which variables most strongly

affect which others. The grouping can then be checked with the verifi-

cation procedure suggested in the previous paragraph."

- -
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I Several points need to be made. Conant assumes that

the user of the method can decide in advance what value to use for his

time delay, and so discusses only the case where t' is one cime unit

U 1(appropriately chosen) later than t. But as with traditional

correlation we can generate a correlation function by systematically

letting t' increase and computing T* between pairs of variables at a

large number of time intervals. Since the data need not have the same

J number of values on each variable, and since the variables can be

nominal categories (e.g. "yes", "no") as well as continuous variables,

Iwe effectively have a means of computing nonparametric auto- and cross-

correlation functions. The autocorrelation function is found by

computing T*(Xi :Xi') in Conant's notation, that is the transmission

3between a variable and itself measured later. Autocorrelation

measures the "inertia" or "memory" of a variable - the tendency of

a variable to affect its own later value.

Table 3 and Figure 3 from Conant show the structure in

the data part of which are shown in Table 2.

TABLE 3

t u  X," X1 X' 1X .. "

X, 0.098 0.013 0.690 0.161 0.073

X, 0.002 0.0:3 0.002 0.145 0.012X, X3 0.109 0.012 0.35. 0.044 0.017
X4  0.002 0.413 0.002 0.009 0.021
X5 0.000 0. 186 0.002 0.259 0.195

!R F
Secn strongest pai rI.. rejations. j% tdn :mist by arrows Ahvc

thicknm i% proportional to top
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The analysis, to a first approximation, suggests that the system

is composed of two "molecules", (X1 ,X3) and (X2 ,X4,X5 ), which are

virtually independent, since there is no large flow of information

between them, (XI ) being a source for both. (Note that itis not the

case that there is no transmission between them. Conant has graphed

only strongest of the reations, and has not discussed how to measure

the significance of the transmissions). Conant has also, in the

passage we quoted above, discussed the question of validating the

existence of independent molecules by estimating the transmission

between them. (In his paper what we are calling "molecules" are

called "subsystems"). Since the method is one which has not been

discussed in human factors treatment of information theory we will

develop some notation explicitly..

Validation depends essentially on computing the T* not

between the individual atoms - the measure which was used to suggest

the grouping of the atoms into molecules (we drop the quote marks from

now on for convenience), but between one molecule as a whole, and

another molecule as a whole. If the system can really be represented

as a number of tightly coupled molecules loosely coupled with one

another the total information transmission among the atoms of a molecule

should be high, but the transmission between the atoms of one molecule

and those of another should be low, and the transmission between

molecules should be low if the system is really composed of indepen-

dent subsystems.

To compute molecular transmission we first, as usual,

compute the entropy of the molecule and the joint entropy of the

contingency table. We then use Equation 2 and Equation 7 to compute

T*. The difference is that the variables are now vector variables,
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not scalars. As an example, let t' - 2, and take the values of the

j1 variables from Conant's data, Table 2. The first entry in our

frequency of occurrence table is then to be calculated from the

J entries in Table 4.

time o .... 2

l1

I~1 .... 23....

X3

X42 1 . . . . 2 . .•

X5  1. .... 2 ....

Table 4

The vector value of the molecule (X1 ,X3) is (1,I) at time

t = 0 and (3,3) at time t = 2. The vector value of the molecule

(X2,X4,X5) is (1,1,1) at t 0 and (2,2,2) at t = 2. And the value of

the contingency table entries for H(A,B) is the value of the vector

((XI,X 3)(X2,X4,X) ) at the two moments, which are (Il)(IIi,))

at t - 0 and ( (3,3) (2,2,2,) ) at t = 2. Since we want to compute

the transmission between the molecules at a time delay of t' = 2, the

values for the table of frequency of occurrences are

(Xl'X3)t U (1,I) with (X2,X4,X)t, (2,2,2).

More generally, if we have a molecule with three atoms

Iand each atom can take three values, the possible vector values the

molecular variable can take are 27 in number namely,

(1,1,2)

1 (1,1,3)
(1,2,1)

1 (1,2,2)
(1,2,3)

11 (i,3,1)
I

(i ,3,2)
~(1 ,3,3)
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and it is the frequency of occurrence of each of these triples

which we now use for computing nilog2 ni. Similarly for a molecule

with two atoms each of which takes three values the molecular

variable values are the set

(1,1)

(1,2)

(3,2)

(3,3)

and their frequency must be tallied. To anticipate a point to which

we shall have to return later, the great increase in the number of values

taken by a vector variable even when the scalar atoms take only a few

values has important implications for the amount of data which must

be collected. The contingency matrix from which molecular transmission

is computed therefore looks like Figure 4.
(XIX 3) t

(1,1) (1,2) (1,3) (2,1)
n11 1 Ml' )l n ((l2) n ((13)1

(1,1,1)) (1,1,1)) (1,1,1)) .

n
(1,1,2) (1,1,2)) (1,1,))

n((1,l)"
(1,1,3) (1,1,3))

(x 2 9 x49 x5) tt-

Z(3,3))

Figure 
4. 

E
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where n((i j)(kim)) is the number of times the value (i,j) occurs

in molecule (XI,X 3) at time t and the value (k,l,m) occurs in molecule

(X29X4,X 5) at time t'

The calculations of entropies and transmission is

straightforward,

T( (XIX3 ) t:(X 2X49,X5) t,

J = H( (XlX 3 )t) + H( (X2 ,X 4 ,X)t1 ) (8)

- H((XlX3)t,(X2,X4,Xs5t,)

~and

T* = T( (XI,X3)t:(X 2,X4,X5)t,) (9)

min ( H(XIX3)t , H(X2 ,X4,Xb)t,)

There is no difficulty when t = t', that is, when there is no time

shift and we are looking at static not dynamic relations.

These calculations allow us to detect the inter-relations

and groupings among system variables, and to discover in what way and

to what extent the system can be regarded as being composed of nearly

independent subsystems. In the end the proposed structure must be

mapped back onto the physical situation in which the measurements were

made. We saw both with respect to the attention data and also to

Conant's hypothetical data how structure emerges from transmission

measures. Several different approaches have been suggested in recent

years. Most of them take their point of departure from the work of

Ashby, and explore the implications of "higher moments" of information

transmission, such as Q-measures (which correspond to interactions as

distirct from transmissions) or new relations such as Krippendorf's

"structural entropy" which is defined as the constraint in the data

which remains when the constraint due to each variable acting

independently of the others is discounted. Those interested should

consult Ashby (1965), (1969), Broekstra (1976),(1977), and Krippendorf
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(1979). While some of these at first sight seem to have considerably

more power than the use merely of transmissions, their application

to real, as distinct from simulated data turns out sometimes to reveal

rather bizarre properties of the measures. For example an attempt

by the writer to use Krippendorf's method on some data from perceptual

motor skills produced a situation where the largest values of structural

entropy were negative, which Krippendorf takes to mean that the earlier

values obtained have "overdetermined" the data. Since no earlier

values than the large negative ones had appeared in the analysis it

is rather unclear how the resulting structure is to be understood.

Furthermore one of the most attractive qualities of Krippendorf's

method is the elegant graphical representation of structure which it

yields, but in practice the graphs become unintelligible for more

than five dimensions. (This is true for almost all graphical measures).

In this paper we will therefore stick to the use of transmissions, but

readers should be aware of the extensive publication on methods of

structural analysis at present going on in Systems Science journals.

Let us review the arguments which take us from entropy to

transmission to structural interpretation. The total constraints among

the variables of the system due to their interactions make up the

overall transmission between all variables,

T = T(X.:X :3X:s

TTOT (1 :X :X4:X5  H(X1 ) + H(X2 ) + . "+H(X7 )

-H(XI,X 2,X3,X4,X5 ) (10)

What size are the molecules? If we calculate all the binary

transmissions T(XI:X 2 ), T(XI:X 3 ) . . . T(X4 :X5 ),

sum the result, and subtract the result from TTOT, the difference

is the amount of constraint which is not accounted for by the binary
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molecules. If it is large with respect to TTOT then it is

J necessary to examine ternary molecules, etc. If it is small, then all

the structure is adequately accounted for by the binary interactions

j plus the effect of each variable on itself. The result is the

required description of the organisation of the behaviour of the

I system at the particular combination of (t,t') which was used to

compute Equations (8),(9), & (10). Conant (persoral communication)

has recently developed a new method which selects a "target"

J variable whose behaviour it is desired to explain, and selects a

time shift (t'). The algorithm then finds the single relationship which

j goes furthest to explaining the behaviour of the target variable;

thqn the binary relation which is strongest; then the ternary

Irelation which is the strongest, and so on, until "all" of the
entropy associated with the target variable is accounted for. This

is a more economical method than displaying all possible interactions,

Jbut as at present implemented will not make it apparent if two or

more relationships are only marginally different in the size of their

Ieffect on the target variable. It would be relatively simple to allow

the researcher to specify the threshold he would accept for deciding

Ithat one variable was so close to the value of another that both

should be displayed. Certainly there is toom for the development of

algorithms for reducing the amount of computation and work in the

Ifinal stages of the analysis. This is very desirable because as the

size of the vectors rises so does the computation time, with diminishing

I returns in terms of accuracy of determining the structure.

IMethodological Problems
The equations and concepts involved in the application of information

theory to the analysis of complex systems have for the most part been
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developed and tested using simulated data, although there are one or two

examples of their application to empirical data (Conant, 197;

Krippendorf, 1979). When they are to be applied to data from

experiments a number of important methodological issues must be

considered. Chief among them are

1. The amount of data required: run length.

2. The precision required: the quantizing problem.

3. The shape of the window used.

4. The choice of time relations.

5. Methods to display the results.

6. Statistical tests of significance.

1. The amount of data required.

Since the basis of information theory calculations is

the tabulation of the relative frequency of events, the minimum

requirement is that enough data be taken to ensure that the estimation

of frequencies is sufficiently accurate. However there is no simple

rule for the amount required. This is because there is a strong

interaction between the amount of data required and level of precision

at which the values of the data samples are measured, i.e., with the

number of levels at which the values of the variables are measured.

The latter question, whether for example to use an 8-bit, 12-bit or

16-bit ADC when collecting analogue data, will be referred to here as

the quantizing problem. The most immediate effect of quantizing on

run length we have already seen. As we compute molecular interactions

even variables which as atoms have rather coarse quantizing, say 3

levels as in Conant's simulated data, generate many more levels as

higher order vectors are constructed from atoms. Hence data which may
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I be adequate for assessing the relative frequencies of atoms, and

perhaps even of binary molecules, may well be far too sparse for

measuring the relative frequencies of occurrence of 3-tuples or

I 4-tuples.

Let us assume that we have a variable which takes only

two values. If we collect a run of 100 samples we might feel reason-

ably sure that we had an acceptable estimate of the relative frequencies

when the two values have probabilities p - 0.8, I-p - 0.2 Twenty

] expected occurrences may be enough to estimate 1-p. But if we quantize

the same variable at four levels, each binary level being subdivided into

]half) the expected value is only 10 for the rare events, and in a real

sample might well depart quite markedly from that value. If any higher

precision is used it is quite clear that an N of 100 is inadequate even

for calculating atomic entropies, let alone molecular entropies.

Since the interaction with quantizing is so important

we will now turn to the latter, and return to the general problem of

specifying the amount of data required afterwards.

2. The Problem of Quantizing

ISome variables are inherently discrete. If we ask an

observer to detect the presence of a target on successive trials

sampling instants his response will be a binary variable "present"

or "absent", "yes" or "no", which can be coded as 0. or 1. On the

other hand there are variables which are inherently analogue, and whose

values must be acquired through an analogue to digital converter. The

latter in most standard systems will have 12 or 16 bit precision. But

for many applications such accuracy is far more than is required, and

would anyway put an intolerable computational load on an investigation

which required multiple correlation, and an intolerable data acquisition

I /
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load on an investigation which required the operator to measure the

frequency of occurrence of different values of the variables. What

is an appropriate precision, level of quantizing, to give an

acceptable compromise between precision and practicality?

Conant and others who have developed methods for the

detection of structure maintain that surprisingly coarse quanti- L
zation can be used without a significant loss of information about

structure. No systematic theoretical or empirical investigation of

this point seems to have been made. We here present both approaches.

We wish to establish the way in which the value of Q, the number of

levels at which a variable is measured, affects T* the normalised

transmission between two variables, whether atomic or molecular.
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for a given set of data when Q is at a high level of precision, that

is, when quantizing is fine. We then make Q increasingly coarse, and

plot the values of T* for the coarser levels as a function of their

value at the fine level. If no change in T* is caused by the

increasingly coarse quantization the data will lie on a straight line

at 45 slope which passes through the origin. Figure 5 shows such a

I plot, based on several sets of data obtained by the author and which

are used later in this paper to develop the method. It appears from

o IFigure 5 that as Q becomes smaller, (quantizing becomes coarser)

values above about T* - 0.3 are slightly overestimated, although not
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very seriously, while values below 0.3 are progressively under-

estimated. The underestimation appears the more serious problem,

since from the graph it seems that almost no values of T* fall below

0.1 when very coarse quantizing is used. On the other hand one

might want to argue that even if very low values of T* are stat-

istically significant, they may not be very important in explaining

the structure of the behaviour, since any variable which transmits

less than ten percent of its available information will not be an

important source of structure. This is a general problem which is

frequently overlooked in the use of statistics: an effect can be V
significant without being important). From Figure 5 it seems that

providing we are interested in T* of more than about 2.0 it will be

sufficiently accurate to quantize to 4 levels, regardless of the

initial precision with which data are collected. If we express the

results as digraphs, the difference between the structures obtained

at Q-2, Q-4, and Q-8 are shown in Figure 6. (See also Appendix C.)

It is also possible to approach the problem of identifying

an appropriate quantizing level analytically. What is required

is a test which will tell us when we are quantizing too coarsely,

and as a result the distribution of frequency of occurrences are

no longer representative of the distribution as it was when higher

Q values were used.

Consider Figure 7, in which a Gaussian distribution is

shown quantized at three levels of Q, Q = 10, Q - 4, and Q = 2.

I r

Figure 7



129

I The decision rule we wish to adopt is, choose the smallest

J value of Q which results in a distribution of frequency of occurr-

ences which is recognisable as that one derived from the original

Jdistribution. Clearly at Q - 10 the unbalanced probabilities in

the different cells of the histogram are recognisably those of a

IGaussian distribution. On the other hand, at Q = 2 there is no

way to decide whether the distribution is Gaussian or uniform,

Psince both of those distributions if split at the mode give 50%

entries in the top bin and in the bottom bin. This suggests a

general line of argument. When a distribution such as a Gaussian

distribution is finely quantized it can be recognised as a Gaussian

distribution because we can test the observed frequencies of

occurrence in the bins of the histogram against the expected

frequencies for such a Q, using a chi-square test. On such a test

our Q=10 quantized data will clearly be from a Gaussian distribution

and not from a uniform distribution, while at Q-2 the frequencies

would fit either distribution (or indeed any distribution which is

symmetrical about the mode). At Q-4 the distribution is detectably

not a uniform distribution, but might be either Gaussian or triangular.

The procedure with a variable from a known distribution

is therefore as follows:

1. Quantize more coarsely and compute the frequency

4 distribution.

2. Use chi-square or another appropriate statistic to

test the new frequency distribution against

J (a) the known "parent" distribution and (b) other

distributions such as triangular, uniform, etc.

I
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3. If the new distribution is still recognisably the

original distribution, and does not match any rival

candidates, go back to step 1 and reiterate.

If the distribution no longer matches the "parent"

distribution, the previous Q level should be used, not

the new one. No coarser quantizing is permissible.

If the variable is measured only on a nominal scale a

slightly different argument seems appropriate. Consider Table 5

in which data have been quantized at Q = 8, Q = 4, and Q - 2. Chi-

square has been computed against the hypothesis that the frequency

distribution is uniform.

,' - -Chi-square-lO.2

Q -8 812 1 1 10 17 d
_9_48 _1 12 8 i0 1 0.2 >p > 0.1

Chi-square - 4.9
Q - 4 13 20 20 27 df=3

0.2 >p > 0.1

Chi-square - 2.44

Q - 2 33 47 df-1
0.2 >p > 0.1

Table 5.

Observed frequencies and chi-square

values at different quantizing levels.

In each row data from the previous row are merged to form

the new frequency distribution. As is apparent from the values of

chi-square, the distribution preserves its uniformity even under very

coarse quantizing.

Consider, on the other hand, Table 6, where the same process

has been carried out. Here we find that even at Q - 4 the shape of

the distribution is statistically different from that at Q - 8.
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___ Chi-square = 10.2
Q 8 4 8 8 10I 12 12 17 0.2 =p 7.

Q=8 4 810.2 >p > 0.1

Chi-square 2 7.9
Q=4 12 17 22 29 df = 3J< 0.05

Chi-square = 7.25
Q=2 29 51 df = 1I I ______ _________ P < 0.01

I] Table 6.

Observed frequencies ar chi-square

values at different quantizing levels.

INote further that the first row (Q=8) contains the same data as in

Table 6, but the cells are arranged in a different order. Consequent-

Ily the values of the more coarsely merged cells will be different at

lower levels of Q. Now since we are dealing with nominal data the

order of the bins is entirely arbitrary. At Q = 8 we can rearrange

the cells in any order and obtain the same value of chi-square. But

cell orders are not equivalent in the effect they have on the I
II arrangement of data when it is merged to form the coarser Q levels.

If the original Q8 data are approximately uniformly

distributed we can rearrange themin such a way that any slight

departure from uniformity will be emphasised. That is what has been

done in Table 7, where the data have been rank ordered from the

highest frequency to the lowest. This will guarantee that as

coarser Q levels are used any departure from a strictly uniform

original distribution will be emphasised. If, despite this, a

g chi-square test still shows the distribution to be uniform at a lower

Q we can be assured that the coarse quantizing has not distorted

the distribution of the data.
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This suggests a method for determining the optimal level

of quantizing approximately uniformly distributed nominal data.

1. Use chi-square to establish the uniformity of the .

distribution at a high Q.

2. Rearrange the data into rank order across the

distribution.

3. Pool and quantize the data at a coarser level.

4. Test for uniformity at the new level with chi-square.

5. If the data are still uniform, go back to step 3.

6. If the data are non-uniform, retain the last Q level.

at which they were uniform.

The method can be adapted to other than uniform distributions,

but the rule for maximising the departure from the expected distribut-

ion will be different, and must be chosen appropriately.

It seems in general, for the empirical and theoretical

reasons touched on above, that Q = 4 will be found acceptable for

most data.

We are now in a position to return to the question of how

much data should be collected. The following points are taken from

Conant. It should be borne in mind that we assume that the necessary

steps have been taken to establish the coarsest Q which can be used for

a particular investigation,and that we therefore have Q fixed. Conant's

treatment will be found in a paper to the Society for General Systems

Research, January, 1980.

Whatever level of transmission we are estimating, atomic,

binary molecules, 3-tuple molecules, etc., we require an average of

at least 5 occurrences of each value of the variable, whether a

scalar or vector variable, and there should be no tuples with an

I.
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expected value of zero. (Note the similarity to the requirements

J for an adequate estimation of chi-square). Conant, following Miller

(1955), argues that if each variable as quantized at level Q, and

J the run length (toLal number of simultaneous observations on all

variables) is m, then the highest order transmission that can I

satisfactorily be calculated for the set of transmissions

T(1,2 ...... .. k:j) is that which satisfies the inequality

>M.Q(k+l) (11)

So for example if we have 200 samples of several

variables each measured at Q = 4, then

200 = 5 .4(k+l)

40 = 4 (k+l)

and only binary transmissions can reliably be estimated, (T(X:Y),

not T(X,Y:Z),) since for a relationship of the form T(X,Y:Z) k = 2,

3
k + 1 3, and 4 = 64 > 200/5.

If not all variables are quantized to the same precision,

jthe rule becomes

in > 5.n Qi

where Q. is the quantizing level for variable i.1 -

If m and k are given, (that is, for example, if we have

only 500 samples and wish to compute 3-tuple transmissions), then the

required quantizing level is given by

Q = (m/5)
I /(k+l) (12)

j (But of course the statistical acceptability of the value of Q

must be established as discussed in the previous section). If the

data are such that a Q of the required coarseness cannot be adequately

computed, then only lower order transmissions can be reliably estimated,

despite Conant's formulae, (which give a necessary but not sufficient

test).
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Conant suggests that for maximum efficiency the entropy of

each variable should be maximised. This requires that the width of

histogram bins be chosen so as to make the frequencies in each bin as

nearly equal as possible, even if not all the bins have the same

width. For example, given data which, under equal bin widths give

frequencies 6,2,1,2 which it is desired to pool into Q=2, the cut

should be made in such a way that the frequencies become (6,5) not

(8,3). Clearly this kind of pooling destroys the shape of the

original distribution, and changes the entropy of the variable. This

is permissible for detecting transmissions, since the changes in the

entropy of one variable does not affect the degrees of freedom of the

second variable. But in the opinion of the present writer such

rearranging should only be done after the methods described earlier

have been used to find the appropriate level of Q.

3.4 Windowing and Time Relations

We now return to the problem of choosing appropriate time

delays between variables when calculating transmissions. It will be

recalled that measuring one variable at time t and another at t'

= (t + dt) allows us to compute the lagged transmissionwhich when

normalised as T* is a nonparametric measure of correlation at lag t,

and which can be either auto or cross correlation depending on whether

the two variables involved in the transmission equation are identical

except for the time shift. The relation between the values used in

such a calculation is indicated by the window in Figure 8. The

particular shift shown is that appropriate to measuring T(XI,X2 :X3)

at dt = 2, and will lead to the following form of Equation (2),

T(XI,X 2 :X 3 ) = H(XI,X 2 ) + H(X 3) -HeXIX2)AX3) )

The particular window setting finds one occurrence of the vector

value ((2,2),3), out of the possible range of vector values ((Ii),I).



5

((4,4),4) at Q = 4.

Time= 1 2 3 4 5 6 7 8 9 10 N

X 3 1 2 1 1 4 1 2 1 4 12 Q 4

X2 311 3 1 2 4 4 3 4 Q 4

X3  4 3 1 3 3 3 1 2 2 Q=4T3
Figure 8

It is clear that the choice of lag and the choice of

window are to some extent arbitrary. For example, we could choose

to compute

T( (XI ,XI  ,XI  ):X2  )
t t+l t+2 t+3

The properties of such windows have not yet been explored,

and the meaning of the more exotic is not at once apparent. It may be,

for example, that if one variable changes more slowly than another

(has a lower bandwidth), a wider window for the slower variable

would match the sampling more closely to its bandwidth than the

narrower one appropriate to a variable with a higher bandwidth. In

this report only windows which are extended vertically are used.

Active exploration of other windows is proceeding.

An important problem in the use of T* to reveal structure

j is the appropriate choice of dt. As Conant (1973) points out in his

work on meteorological data, too short a value of t' means that

slow changes will not appear in the structure, while too large a

t'will filter out fast changes. If the investigator has no idea about

the relative and absolute bandwidths of the processes which he is

investigating, it will be necessary to sweep f' systematically over

the maximum possible range, requiring a great deal of computation.,1
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5. Methods of Displaying Structure

The discovery of significant structural transmissions

leaves us with the problem of how to display the results. When more

than four or five variables are involved this is a problem of

considerable difficulty, since w have a measure of structure at each

time lag for which the transmissions have been calculated. One of the

disappointing aspects of Krippendorf's method (Krippendorf, 1979)

which shows structure most elegantly in his example, is that when more

than four variables are involved the graphical representation becomes

almost impossible to draw and to understand. Since the power of the

methods is that they can in principle handle multivariate systems of

considerable complexity, a good means of displaying the molecular

structures is most desirable. Providing that the system does not turn

out to be composed of subsystems which are only loosely coupled with

each other, it may be possible to use digraphs at different levels.

Thus if we have a system which is composed of three ternary molecules

which are only loosely coupled, we could display the correlation function

for the variables within each molecule separately for each molecule,

and then display the time course of the coupling between the molecules,

without simultaneously showing the internal relations between the

atomic constituents of the molecules.

Obviously there are two straightforward ways of doing

this. One is to choose a "target" variable, and to draw graphs of

the correlation functions of each other variable with that variable,

so that there will be as many sets of correlation functions as there

are variables. (In fact there will in general be more, since the

discovery of structure will suggest binary and ternary molecules which

should be graphed against any particular "target" variable). Efficient

computer programs and computer searches for the best subset of functions
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I is required for efficient computation, because of the very large

I amount of calculation involved, and the very large number of possible

options as higher order interactions are searched.

I The second method is the one we have emphasised, namely

the use of digraphs, with a separate digraph drawn at each time

delay of interest. Both methods will be used in the examples given

I in the next section of this paper.

Another problem is to decide what to represent in the

digraphs. The initial stage is to discover the statistically

significant transmissions, a problem to which we will shortly turn.

But in many cases where a very large number of samples has been

j collected in order to allow the estimate of high order molecular

interaction, even very small T and T* values will be significant

I due to the very large data set. Following Conant we have normalised

T to T* in the range 0 to 1. But if we find a T* of, say, 0.08 which

is statistically significant, should we seriously bother with it?

IThe contribution of such a variable to the overall properties of the

system must be minimal. When a very large proportion of the trans-

Jmissions are statistically significant, we shall adopt the convention
of drawing digraphs for several decreasing values of T*, so that the

1reader can see which variables are important and which are not. There

is no general solution to this problem, although as we saw earlier,

Conant's new method allows successive approximation to be made to

1 ]the total entropy of a chosen variable.

16. Tests of Statistical Significance

Despite the very large number of experiments which used

I information theory to study human behaviour in the 1950's the
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question of how to measure the absolute level of significance of a

transmission was seldom discussed. Usually measures were taken of

performance and behaviour at different levels of entropy of stimulus

variables, and the transmissions compared between conditions, using

t-tests or parametric analysis of variance. Attneave (1954) showed

that for certain kinds of variables T is related to the correlation

coefficient by the relation

T = 1/(1-r1

but his restrictions on the kinds of

variables for which this is true are too stringent for a method of the

generality we are considering.

It would seem at first sight that all that is required is

a chi-square test to establish that data are not merely randomly

distributed over the contingency matrix, and McGill (1953) has shown

that

1.3863nT(X:Y)

is distributed as chi-square with

(X-l)(Y-l) degrees of freedom, where n is the number of samples. But

a simple appeal to chi-square is not sufficient, since, for example,

a contingency table in which all the data are in one row of the

matrix, or in one column of the matrix, or entirely confined to the

major diagonal will all give values of chi-square which are strongly

indicative of non-randomness; but only the last of the three transmits

any iwformation.

A safer approach is through the Contingency Coefficient,

C, (Seigel, 1956 p.196-202. The data are arranged in a contingency

table, in an r x k matrix (where r and k need not be identical), with

the total number of entries being N. We then compute
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rk (0..- E..)

X 2 =Z
i=lj=1 E..

Jfrom which

X2J C= N + X2

O. E are the observed and expected values of the frequency data

as usual. Degrees of freedom for C are (r-l)(c-l), and the value of

Ithe equivalent chi-square is tested. Seigel states that a disadvantage

of C is that its maximum value depends on the size of the matrix for

which it is calculated,

|C = (k-l)
4 max

(k)

but this is easily accommodated by normalising with respect to the size

of the matrix. When the latter is symmetrical, we then have.1 c C. C = -1 C / e-

and if Q 4, a level of quantizing which we saw is a good working

rule, the significance of C* is given in the following Table 9.

____ Significance Level

0.05 0.01 0.0 01

100 .0.440 0.490 0.540

200 0.323 0.364 0.404

Run 1300 0.267 0.302 0.337
length 40 0  0233 0.264 0.295

1500 0.209 0.237 0.266

600 0.192 0.217 0.243

]Table 9

Values of C*, the Normalised Contingency

Coefficient, for different significance

levels and run lengths.
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A suitable test for significance for transmission

from a square matrix is therefore given by the following steps:

1. Compute chi-square for the Q x Q matrix.

2. Compute C.

3. Compute C*.

4. Find the appropriate value of C in Table 9

and hence the significance of the transmissions.
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1 1. The structure of behaviour int a task of increasing
complexity: 6 degrees of freedom.

In the example a perceptual motor task was carried out

under several conditions, beginning with a very simple version of

J the task and gradually increasing the complexity. N = 600, and the

data are effectively averages over between 5 and 10 trials. All

variables were measured at Q4" With N - 600 all except the

very smallest transmissions are statistically significant at

Ip < 0.01 by C*. In this case it is therefore most useful to

present the transmissions as a table, and to provide digraphs

showing the structure of the most important significant relations.

In this example we present the structure of the relations at

T7' T2 and r. This is for heuri3tic reasons only. T* can be

calculated at any value of T, but we are concerned in this example

primarily with the problem of displaying results when almost all

the values of T* are significant by C*.

I !
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TRANSMISSIONS AND SIGNIFICANCE TABLES

TASK 1A

(N - 300, Q 4)

T0secs.

P R 14 x Y Z

P 1.00 .25 .24 .28 .33 .50
R .28 1.00 .08 .65 .18 .16 T
14 .27 .08 1.00 .07 .17 .29
X .31 .64 .07 1.00 .20 .19
Y .36 .17 .17 .20 1.00 .28
Z .52 .15 .26 .18 .26 1.00

P R 14 X Y Z

P 1.80 .50 .49 .55 .65 .93 T
R .50 1.99 .16 1.28 .34 .29
W .49 .16 2.03 .15 .34 .53
x .55 1.28 .15 1.96 .40 .35
Y .65 .34 .34 .40 1.95 .51
Z .93 .29 .53 .35 .51 1.84

P R 14 X Y Z

P 1.000 .708 .687 .726 .817 .867 C
R .708 1.000 .443 .927 .648 .576
14 .689 .443 1.000 .442 .635 .718
X .726 .927 .442 1.000 .670 .628
Y .817 .648 .635 .670 1.000 .723
Z .867 .576 .718 .628 .723 1.000
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j ITASK IA

TO. 2 secs.

P R W X Y Z

P .53 .26 .27 .27 .26 .42
R .21 .51 .08 .42 .09 .13
W .24 .07 .69 .05 .13 .26 T*
X .28 .59 .07 .53 .15 .15
Y .27 .19 .23 .16 .37 .20
Z .49 .18 .26 .16 .28 .50

P R W X Y Z

P .95 .53 .54 .53 .52 .76
R .38 1.02 .17 .83 .17 .23
W .44 .13 1.37 .10 .26 .48 T
X .50 1.18 .15 1.03 .30 .28
Y .49 .38 .45 .31 .73 .36
Z .88 .36 .52 .32 .54 .92

P R W X Y Z

P .885 .727 .710 .721 .744 .829
R .638 .873 .446 .798 .506 .506 C*

W .660 .401 .944 .357 .555 .700
X .703 .908 .466 .867 .614 .563
Y .749 .666 .675 .616 .827 .652
Z .864 .625 .714 .595 .722 .891

I
I
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TASK IA

TO. 5 secs.

P R W X Y Z

P .24 .20 .25 .17 .12 .21
R .12 .37 .06 .31 .04 .08 T*
W .20 .04 .52 (.02) .09 .21
X .16 .36 .08 .35 .05 .09
Y .18 .11 .20 .08 .08 .11
Z .27 .13 .28 .09 .15 .26

P R W X Y Z

P .44 .39 .49 .33 .23 .39
R .22 .73 .11 .61 .09 .14 T
W .35 .09 1.01 (.04) .17 .39
X .29 .71 .16 .69 .09 .17
Y .32 .22 .39 .15 .16 .20
Z .48 .26 .55 .19 .29 .48

P R W X Y Z

P .721 .665 .700 .609 .550 .667
R .506 .766 .393 .734 .358 .433

W .604 .305 .865 (.100) .464 .639 C*

X .570 .770 .477 .761 .375 .460
Y .625 .558 .650 .460 .484 .503
Z .724 .560 .717 .494 .599 .734



ITASK 1A 
4

1. secs.

P R W X Y Z

P .05 .05 .18 .05 .08 .09
R .08 .14 .05 .15 .18 .07
W .15 (.04) .41 .06 .07 .19 T*
X .08 .16 .05 .14 .15 .05

0 7 .10 .10 .05 .06

IP R Y x y Z

P .10 .11 .34 .10 .15 .16
R .14 .28 .09 .29 .35 .12 T

w.27 (.08) .79 .11 .13 .34
x.13 .31 .09 .28 .29 .08

Y .13 .14 .20 .19 .10 .113z .14 .07 .35 .07 .18 .17

P .394 .386 .609 .369 .474 .464
R .440 .553 .329 .591 .623 .428

IW .531 (.283) .763 .340 .302 .582 C
X .437 .569 .344 .569 .579 .370
Y .435 .436 .513 .507 .392 .409

Z .463 .332 .633 .338 .511 .483
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TRANSMISSIONS AND SIGNIFICANCE TABLES

TASK IB

(N = 300, Q4)

TO

P R W X y Z

P 1.00 .21 .13 .10 .44 .22
R .23 1.00 .39 .27 .15 .08 T*
W .14 .38 1.00 .34 .08 .05
X .10 .45 .33 1.00 .09 .07
Y .46 .15 .08 .10 1.00 .41
Z .23 .08 .05 .07 .41 1.00

P R W X Y Z

P 1.83 .41 .25 .18 .84 .43
R 0.41 1.95 .75 .49 .30 .15 T
W 0.25 .75 1.92 .63 .16 .09
X .18 .49 .63 1.84 .18 .13
Y .84 .30 .16 .18 1.92 .79
Z .43 .15 .09 .13 .79 1.95

P R W X Y Z

P 1.000 .672 .529 .493 .802 .649
R .672 1.00 .793 .716 .620 .449 C*

W .529 .793 1.000 .762 .484 .379
X .493 .716 .762 1.000 .518 .424
Y .802 .620 .484 .518 1.000 .816
Z .649 .449 .379 .424 .816 1.000
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I TASK 1B

T secs.

P R W X Y Z

P .43 .15 .14 .12 .36 .21

R .42 .38 .25 .14 .25 .12 T*
W .25 .58 .42 .24 .14 .08
X .17 .31 .22 .42 .09 .08

Y .31 .12 .14 .12 .41 .30I Z .14 .05 .07 .12 .30 .44

P R W X Y Z

P .79 .29 .27 .22 .69 .42
R .78 .74 .47 .26 .48 .24 T
W .46 1.14 .80 .45 .27 .15

SX .30 .60 .41 .77 .18 .15
Y .57 .24 .27 .20 .79 .59
Z .25 .09 .14 .22 .57 .87

P R W X Y Z

P .799 .549 .556 .548 .765 .673
R .827 .802 .660 .539 .691 .532
W .663 .879 .802 .683 .574 .463 C*

X .626 .774 .658 .861 .491 .470
Y .746 .560 .566 .542 .823 .749
Z .549 .376 .450 .581 .774 .855I]

$ V

I
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TASK lB

T05secs.

P R W x y z

P .19 .16 .30 .20 .15 .06
R .46 .20 .15 .12 .40 .23
W .49 .25 .19 .10 .38 .25 T
x .30 .13 .08 .18 .25 .17

Y .13 .20 .34 .21 .11 .13
Z .07 .16 .26 .28 .10 .16

P R W X Y Z

P .36 .32 .57 .36 .28 .11
R .86 .39 .28 .22 .77 .45
W .90 .49 .37 .19 .73 .49 T
x .55 .26 .160 .33 .48 .33
Y .23 .3~ .65 .38 .21 .25
Z .13 .32 .49 .51 .19 .31

P R W X Y Z

P .698 .635 .744 .650 .551 .398
R .815 .684 .611 .562 .792 .678
W .831 .700 .608 .509 .784 .682 C
X .744 .555 .467 .610 .691 .620
Y .530 .652 .752 .707 .522 .566

*Z .429 .618 .713 .781 .526 .602
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I TASK lB

I T1.0 secs.

IP R W X Y Z

P .12 .31 .30 .17 .15 .11

R .12 .21 .31 .16 .12 .10 T

W .20 .15 .22 .18 .23 .22

x .14 .15 .20 .18 .18 .10

Y .20 .39 :30 .18 .15 .14

Z .19 .30 .20 .27 .12 .09

IP R W X Y Z

p .23 .60 .57 .32 .29 .21

R .23 .40 .59 .29 .23 .20 T

W .36 .30 .42 .32 .45 .44

X .27 .29 .37 .33 .34 .19
Y .37 .77 .57 .34 .29 .27

jZ .35 .59 .39 .50 .23 .18

P R W x Y Z

P .523 .746 .719 .601 .565 .520IR .541 .680 .744 .610 .543 .521
w .632 .597 .674 .637 .681 .637 C

X .580 .607 .654 .642 .633 .495IY .624 .800 .737 .625 .605 .586
Z .610 .744 .648 .716 .551 .522
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TRANSMISSIONS AND SIGNIFICANCE TABLES

TASK IC

(N = 300, Q4)

T 0 secs.

P R W X Y Z

P 1.00 .16 .11 .10 .12 .17

R .14 1.00 .23 .07 .04 .06
w .11 .25 1.00 .22 .11 .06 T*
x .10 .08 .21 1.00 .06 .07

Y .12 .04 .12 .06 1.00 .31
Z .17 .07 .06 .08 .30 1.00

P R W X Y Z

P 1.94 .27 .21 .19 .23 .32

R .27 1.77 .44 .13 .07 .11
W .21 .44 1.90 .41 .22 .12 T
X .19 .13 .41 1.86 .11 .14

Y .23 .07 .22 .11 1.96 .59
Z .32 .11 .12 .14 .59 1.92

P R W X Y Z

P 1.00 .615 .539 .489 .539 .626

R .614 1.00 .700 .428 .326 .412

W .539 .700 1.00 .690 .537 .420 C*

X .489 .423 .690 1.00 .428 .481

Y .539 .326 .537 .428 1.00 .759

Z .626 .412 .420 .481 .759 1.00

-MI-
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TASK IC

T02secs.

IP R W X Y Z

P .41 .08 .08 .10 .13 .18
R .25 .44 .13 .07 .05 .08
W .19 .27 .51 .20 .07 o04

x.14 .09 .18 .60 o04 o05

p .79 .14 .15 .18 .25 .35
R .49 .78 .25 .13 .09 .16jW .37 .48 .96 .37 .13 o08 T
x .27 .16 .35 1.11 .08 .10
Y .23 .13 .42 .24 .78 .56
Z .17 .13 .27 .21 .43 .76

tp R W X Y Z

IP .831 .477 .479 .479 .563 .648
R .712 .869 .580 .400 .393 .476

3W .624 .732 .896 .668 .445 .350 C
X .577 .475 .660 .926 .359 .395
Y .545 .386 .683 .576 .820 .765
Z .498 .413 .580 .570 .674 .832
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TASK IC

TO. 5 secs.

P R W X Y Z

P .16 .06 .13 .10 .10 .14
R .21 .15 .04 .08 .09 .13
W .32 .15 .19 .18 .06 .07 T*
X .20 .10 .10 .32 .05 .06
'Y .06 .17 .40 .18 .12 .10
Z (.03) .10 .24 .18 .08 .09

P R W X Y Z

P .30 .10 .25 .18 .21 .26
R .42 .27 .08 .14 .18 .26
W .62 .26 .37 .33 .12 .13 T
X .38 .18 .18 .58 .10 .12
Y .12 .29 .76 .33 .23 .18
Z (.07) .19 .45 .33 .16 .18

P R W X Y Z

P .590 .355 .537 .510 .526 .579
R .676 .572 .341 .444 .523 .573

w .764 .598 .655 .608 .424 .451 C1
X .705 .499 .526 .762 .377 .450
Y .420 .582 .814 .659 .538 .488
Z (.301) .497 .690 .674 .467 .513

i4
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TASK IC

1.0 secs.

I P R W X Y Z

P .05 .12 .12 .04 (.02) (.01)
R .06 .07 .07 .06 .08 .08
W .17 .04 .06 .11 .08 .11 T*
X .09 .09 .10 .11 .07 .07
y .23 .18 .17 .14 .05 .04
Z .23 .16 .16 .08 .05 .03

P R W X Y Z

P .10 .21 .23 .07 (.04) (.02)
R .12 .13 .14 .11 .16 .16
W .33 .08 .11 .19 .16 .22 T
x .18 .15 .19 .19 .14 .14
Y .45 .33 .32 .25 .10 .07

j .44 .29 .30 .15 .10 .0

P R W X Y Z

P .404 .524 .541 .339 (.252)(.140)
R .387 .433 .457 .394 .487 .467

3 .632 .336 .406 .526 .472 .556 C*

X .527 .451 .471 .495 .452 .465
Y .700 .642 .613 .564 .384 .340
Z .683 .582 .587 .476 .395 .334

1
!

I
I

I
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Discussion

II
The structure digraphs show several interesting features

of behaviour.

1 I. In tableslA and lB there is some degree of independence

between two "molecules", {Z,Y,P} on the one hand, and

{R,W,X} on the other. In IA this description is very

clear for two binary molecules. It is obvious that

Z,PI and {R,X} are independent of each other, but that

their "atoms" are'tightly coupled within each molecule.

Only when we include normalised transmissions below

0.2 do more rich interconnections appear. Even in

task IC this seems to be the basic structure:

TO.2, T > 0.2 {Z,Y} is driving the other set of

variables through W, which is directly coupled to R

and X, and indirectly to P.

2. W appears to play a central role in determining the

behaviour. In IA it is an independent atom which

still shows an inertial effect at T secs., long

after other effects have disappeared. In IB it is a

source at T0 . 2 , a coordinator at T0. 5, and a sink at

T i.0" In 1C it is the link by which {Y,Z} drives the

rest of the system at TO. 2 , and a sink or link at

To. 5.

3. A very obvious feature is the relative predominance of

independent atoms in IC at T 0 2. All the strong effects

are independent. Only when these inertial effects

have died away at TO .5 do a very few interconnections

appear, and unlike tasks IA and IB there are no mutual

* *effects; these are unidirectional. Thus the way in
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which the control of task IC is organised is much

simpler than that of the other two tasks. There is

less interaction among the variables and current

values of one variable affect others for a much

shorter time.

4. Task IA is dominated by atom W and the relation

between R and X which is strong, bidirectional and

and long lasting. {Z,P} dies away quickly, while W

remains the dominant determinant of system behaviour

for over a second.

5. Task IB shows a feature not shown so distinctly by

the other tasks, namely a shifting pattern of organisat-

ion which can be interpreted 23 cyclical activity. We

have already noted that W acts as a source, a coordinator,

and a sink in turn, But this is also true of other

variables. If we compare T* > 0.3 at T0 .2, to. 5 and

r1 .O, we see that early on there is a net flow of

information from {X,W,R) to {Z,Y,P} at 0.2, which is
rever se at T 1.0* At TO. 2 this is apparent even at

low transmissions, since at T* > 0.2 all the arrows

connecting {X,W,R} to {Z,Y,P} flow from the former to

the latter. In other words, if we think of behaviour

starting at some arbitrary instant, the first thing

we will see is {X,W,R} determining wha" happens to

(X,Y,P} (and some inertial effects); then a moment when

there is mutual influence of earlier values of each set

on the other; and then a period when {Z,Y,P} determine

the values of {R,W,X} in the absence of inertial effects.*

* Remember that at TI. 0 one cannot think of the earlier effects as no

longer existing: but their new values will be affecting new values
at Tu o2 TsO The "single trial" described here is a fiction in acontinuous tai
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1 6. Comparing the flow of information in the three tasks

allows us to make some estimates of transmission delays.

Suppose, for example, we wish to know how long it is

j before a change in W affects Z strongly (T* > 0.3), in

Task lB. At TO. 2 there is no direct link between W and

jZ. There is a weak link between W and P, and a very

strong link between W and R. The shortest path would

be (W - P - Z) for a weak effect or (W - R - Y or P - Z)

for a stronger effect. Since r = 0.2, each of these

links is a 0.2 second delay, and an estimate of the time

jtaken for the effect of W to reach Z is (0.2 + 0.2) = 0.40"secs.

for a weak effect, and (0.2 + 0.2 + 0.2) = 0.6 secs. for

a strong effect. If there were a strong (W - Z) link at

o.5 this would shorten the transmission 
delay, but

there is not.

Similarly one can compute loop delays on a single variable.

W will affect itself continuously due to the inertial

I effect; but there is also a 0.4 sec. loop (W - R - W),

and a weak 0.7 second loop (W - P - W), in which the first

delay is 0.2 and the second is 0.5 seconds. **

H 7. Comparing the overall structures shown in the digraphs, and

F ignoring the inertial effects for the moment, we might

tend to sunmmarise the picture of causality as follows.

** Note that for expository purposes here we assume that
T < 0.2 can be ignored in calculating delays. This is not in
general true, although in lB it seems likely that there is no
direct effect of Y on W before a time t such that 0.2 < t < 0.5.

A-
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In lA the most important organizing principles which

iI determine the pattern of behaviour are the persistent

inertial effect of W on itself, and the mutual inter-

Iaction between R and X to form a tightly coupled

molecule, {R,X}. In Task IB it is the interaction

between the molecules {R,W,X} and {P,Y,Z}. IN 1C it

is the driving of the rest of the system by (Y,Z},

with a persistent independent inertial effect of X

on itself.

Having seen these results, how are they to be interpreted?

At this point we can refer to the physical identity of the variables.

The tasks were all variations on that shown in Figure q

The operator manipulated a 6-degree-of-freedom teleoperator,

the slave being approximately 2 metres from master. A pen was held in

its clamped tongs, and was used to draw patterns on a sloping easel.

Task 1A was to draw a straight line approximately 50 cm long from

left to right horizontally across the easel. Task IB was to draw a

circle approximately 30 cm in diameter. Task IC was to draw the

circle while the easel was moved to-and-fro from side to side in the

X-axis (orthogonal to the line of sight).

The movements of the master/slave are labelled P (wrist

pitch, up and down as in raising a pen while writing on a table); R

(wrist roll, as when rotating the wrist about the long axis of the

fore-arm); W (wrist yaw, as when drawing a line on a horizontal

surface while resting the fore-arm on the surface). X(movement of

the entire arm/hand from left to right orthogonally to a line-of-sight

straight ahead); Y (moving the whole arm/hand towards or away from

the operator, as when putting the hand through a window in front of

oneself); and Z (moving the entire arm/hand vertically up and down).



62

In Task IA the strong {R,X} relationship is clearly

due to the necessity to move the entire hand across the easel to draw

the line. X accomplishes the main movement, but R is needed to keep

the pen in contact with the surface at the extremities of the move-

ment, W similarly is a hand movement in the X dimension. The {Z,P}

molecule suggests that the movement was not exactly horizontal, but

was slightly slanting. This would, because of the inclined easel,

move the hand up and away or down and towards the operator simultan-

eously. .he P would compensate for slight vertical Z by dropping

the wrist as the arm rose. The fact that the molecule is {Z,P}

rather than {Z,Y} suggests that the magnitude of the vertical error

was small. A large vertical error would require {Z,Y} coupling

rather than (Z,P} coupling to compensate.

The latter point is confirmed by the structure of Task IB.

The coupling of {P,Y,Z} to form a simple molecule makes sense as a

system to control the 'up-and-away' 'down-and-towards' movement.

(The tilt of the board forces the coupling between Y and Z Moreover

the fact that {P,Y} are mutually coupled, (both being vertical move-

ments) and that Z is driven therefore by both of them, makes intuitive

sense. {R,W,X} on the other hand are all concerned predominately with

movement in the horizontal plane, with{W,X} driving R which compensates;

to keep the pen on the paper as the movements become large and tend to

roll the arm over. The fact that at short delays the horizontal motion

pushes the vertical motion, while at long delays the reverse is true

may reflect a tendency in the operator to make some parts of the circle

faster than others. If he were to draw the top and bottom quadrants

of the circumference rapidly, and the side quadrants slowly, the time

sequence in IB would result. Task 1C is particularly interesting.
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One might have expected strong coupling between X and the other atoms

because of the imposed lateral movement of the easel. This is not the

case. Instead, there is little coupling from X to the other variables,

but a persistent inertial effect. This suggests that the operator was

not synchronising his circular motion with the imposed horizontal

motion, but that the two motions were uncorrelated. The other note-

worthy feature of IC is the extreme simplicity of the digraphs. To

a large extent the way in which the operator carries out the most

complex task is to become a set of independent variables, each having

inertia, but influencing other variables only to a slight extent.

This is at first sight surprising - surely a complex behaviour should

produce a great deal of interaction? Consider, however, what it

Ifeels like to control an automobile when first learning. Rather than

integrated behaviour the actions are controlled serially, one at a

time. If the transitim probabilities between variables are such that

transitions are effectively random, then the time averaged behaviour

will appear as due to independent variables, although they are used

serially. Independent parallel variables would differ not in their

structure digraphs but in the bit rate for tbh system as a whole. The

serial independent system will have a channel capacity which is the

average of the individual variables, while the parallel independent

system will have a channel capacity which is the sum of the individual

variables' capacities. The necessary calculation can readily be

performed on the data from which the digraphs and tables of T* are

1constructed, but are not directly shown in the digraphs. (A similar

point occurred in IA. While both{P,Z} and {R,X} are very important

Icauses of behaviour, the first represents only movements of a very

small magnitude, while the latter represents movements of large
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magnitude. These cannot be distinguished in the digraph).

2. The Structure of Behaviour under the influence of Practice:

six degrees of freedom.

In this task a single operator drew a circle five times,

during which data were collected. He then practised the task for

100 trials, at the end of which data were collected on another five

circles.

In this case the data are presented only as tables of

normalised transmissions, T*, although the significance tables

of C* were calculated as before. The bracketed values in the tables

are not significant.

The data are also presented graphically as correlation

functions, with each variable in turn regarded as a source. Thus

the correlation graphs show normalised transmissions from a source

variable at time t, to target variables at times t + r, with t + T

on the abscissa.
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I
NORMALISED TRANSMISSION TABLES

TASK 2A

N = 200, Q4

f P R W X Y Z

P 1.00 .25 .25 .21 .29 .28
R .25 1.00 .12 .22 .15 .19
W .19 .09 1.00 (.03) .12 .14 T*

X .20 .21 (.03) 1.00 .11 .14
Y .29 .15 .16 .11 1.00 .63
Z .26 .17 .17 .13 .59 1.00

t i secs.

P R W X Y Z

P .78 .22 .27 .19 .32 .32
R .28 .64 .13 .19 .17 .19

W .18 .09 .89 (.03) .11 .14 T*
X .23 .26 (.04) .76 .12 .14
Y .26 .14 .17 .11 .75 .60
Z .23 .18 .15 .14 .60 .77

To. 2 secs.

P R W X Y Z

P .65 .19 .27 .17 .34 .36
R .30 .47 .13 .15 .20 .22
W .17 .09 .83 (.03) .12 .14 T*
X .24 .29 (.04) .62 .15 .15
Y .23 .13 .16 .12 .60 .54
Z .21 .16 .14 .16 .54 .64
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TASK 2A

TO.4 secs.

P R W X Y Z

P .48 .14 .28 .14 .40 .47
R .31 .34 .17 .12 .25 .29
W .15 .12 .74 .05 .12 .12 T*
X .28 .35 (.04) .47 .19 .15
Y .20 .11 .16 .13 .41 .40
Z .18 :.12 .13 .19 .44 .46

TO secs.

P R W X Y Z

P .37 .12 .28 .12 .43 .49
R .36 .23 .13 .08 .31 .35
W .14 .13 .66 .07 .11 .10 T*
X .35 .40 (.05) .32 .24 .20
Y .22 .08 .14 .17 .28 .28
Z .18 .08 .11 .21 .33 .33

TO. 8 secs.

P R W X Y Z

P .29 .12 .28 .15 .40 .47
R .30 .15 .17 .09 .37 .45
W .13 .12 .60 .07 .09 .08 T*
X .44 .35 .07 .26 .29 .27
Y .21 .07 .11 .23 .19 .19
Z .13 .06 .09 .21 .25 .23
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ITASK 2A

T 1.0 secs.

P R W X Y Z

I P .23 .09 .28 .16 .33 .40
R .25 .10 .22 .09 .41 .47
W .13 .09 .55 .09 .08 .06 T*
X .49 .31 .09 .19 .31 .35
Y .15 .09 .12 .28 .14 .15
Z .13 .09 .09 .28 .16 .17I

T secs.
1.5

IP R W X Y Z

P .16 .06 .17 .28 .15 .20

R .09 .04 .19 .15 .33 .31
W .14 .08 .52 .09 .06 (.03) T*
x.42 .19 .16 .17 .44 .61

Y .11 .16 .09 .41 .09 o6
Z .1? .13 (.05) .44 .07 .07I

T2.0 secs.

P R W X Y Z

P .09 .14 .11 .43 .07 .11
R (.03) .05 .17 .23 .16 .15
W .16 .10 .50 .07 .09 .06 T*
X .22 .06 .15 .21 .37 .40
Y .24 .24 .11 .36 .09 .08
Z .21 .29 (.04) .36 .08 .08I

I
II
I
1
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NORMIALISED TRANSMISSION TABLES

TASK 2B

N =200, Q4

T0secs.R Wz

P 1.00 .08 (.04) .25 .34 .27
R .06 1.00 .07 .26 (.04) .10
W (.03) .07 1.00 .10 .10 .06 T*
X .23 .28 .10 1.00 .10 .28
Y .33 (.05) .12 .11 1.00 .29
Z .27 .12 .08 .31 .29 1.00

T01secs.

P R z

P .63 .07 (.04) .25 .35 .32
R .07 .60 .08 .24 .05 .07
W (.03) .05 .82 ZO0 .09 .05 T*
X .18 .28 .09 .69 .10 .19

y.32 .05 .12 .12 .60 .36I
Z .22 .14 .07 .29 .27 .64

T secs.
0.2

P R W X Y Z

P .45 .09 (.05) .20 .37 .41
R .10 .40 .07 .22 .07 .06
W (.01) .04 .70 .10 .07 .05 T*
X .18 .27 .09 .52 .13 .17

y.30 .06 .11 .16 .40 .41IZ .20 .16 (.07) .32 .24 .50
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TASK 2B

T 0.4 secs.

P R W X Y Z
V

P .30 .12 .08 .21 .30 .61
R .15 .24 .08 .16 .13 .06
w (.02) (.03) .58 .11 .04 (.04) T*
x .29 .21 .10 .36 .22 .15
Y .20 .12 .12 .27 .21 .40
Z .23 .24 .05 .49 .19 .33

T secs

0.6

P R W X Y Z

P. .20 .15 .07 .31 .28 .73
R .17 .11 .12 .14 .21 .09
W (.03) (.05) .49 .09 .05 (.03) T*
x .43 .12 .11 .23 .34 .20
Y .14 .23 .17 .29 .15 .28
Z .18 .32 (.04) .66 .12 .22

TO.8 secs.

P R W X Y Z

P .16 .18 .08 .41 .26 .29
R .15 (.03) .14 .11 .20 .18
W .06 (.03) .41 .08 .06 (.03) T*

x .48 .06 .12 .15 .44 .30
Y .11 .28 .14 .35 .17 .20
Z .16 .36 (.04) .55 .13 .17

I
I
I
I
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TASK 2B

T1. 0 secs.

P R W X Y Z

P .17 .30 .08 .58 .22 .20
R .11 (.04) .14 .08 .17 .20
W .06 (.05) .35 .06 05 .05 T*
X .35 .08 .13 .16 .47 .46
Y .15 .29 .11 .34 .13 .15
Z .23 .27 (.03) .30 .19 .14

T1. 5 secs.

P R W X Y Z

P .25 .21 .11 .25 .20 .16
R .08 .18 .08 .21 .09 .09
W .08 (.04) .27 (.04) .08 .08 T*
X .20 .18 .16 .40 .19 .30
Y .23 .14 .12 .15 .22 .11
Z .40 .06 .07 .06 .47 .33

T2.0 secs.

P R W X Y Z

P .34 .06 .10 .11 .37 .35
R .10 .14 .07 .12 .12 .09
W .05 .11 .23 .09 .09 .08 T*
X .17 .36 .17 .43 .13 .14

.18 .15 .14 .09 .23 .25
.13 .15 (.06) .27 .28 .37
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I EXAMPLES OF THE STRUCTURAL ANALYSIS OF

BEHAVIOUR USING INFORMATION TRANSMISSIONI

INOTATION

JTables are always presented with its variable at t on the

left of the table, and at t+T on the top of the table.

Qn ...... ... The number of levels at which a variable is measured.

Q2 is a dichotomous variable; Q4 a tetrachotomous

* variable, etc.

T ........ The delay at which transmission is calculated.

T is transmission between variables measured at the

same moment. T. 5 is transmission measured between

one variable and another whose value was measured 0.5

seconds later than the first.

T ....... . Transmission in bits.

T* ...... ... Normalised transmission: 0 < T* < 1.0

C* ...... Normalised Contingency Coefficient: 0 < C* < 1.0

All values shown in a table are significant at

p < 0.01 except those enclosed in brackets.

N ....... . Number of samples on which calculations are based.

(= run length).

In all the following examples except one, ("selective attention")

sampling was at a rate of 10 H so that if N = 200 this represents

20 seconds of data.

1

..." ....I. .... .... ...I ' .. . ." .....l i ... r : ...: -" " " " ....-' 1
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Discussion

From the transmission functions three main differences

between unpractised and practised operators appear.

1. The unpractised transmissions remain high at longer

delays than the practical transmissions. This is

particularly clear when looking at the inertial effects

(P - P, R - R, eta). Without exceptici the rate of

decay is faster in the practised condition. Note that

this clarifies our use of "inertial". It is not the

mechanical inertia of the system, (which cannot change

with practice), but the formal inertia - the tendency

of the value of a variable to continue to affect its

future values. The more rapid decay in the practised

conditions means that future values become independent of

past values sooner. The practised operator has a more

'flexible' system, which is more rapidly adaptable.

2. On the whole the magnitude of transmissions between

variables is less in the more practised condition. This

is particularly true for the variable W, which shows

virtually no transmission to R, P, or Z when practised.

Similarly R - P, R - Y, and R - Z all show considerable

reductions. This suggests that as practise continues

the variables become increasingly independent of each

other.

3. The only prominent exceptions seem to be cases where

a peak develops for some non-zero value of T. For

example Z - X and Z - R both show a change from

transmission function which indicates a prolonged effect

of the source on the sink variable which is fairly
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uniform out to T = 2.0 seconds. But after practice

Z - X in particular shows a very strong peak at

T = 0.6 secs., while Z - R is developing a peak

centered on T = 0.7 secs. This suggests that

whereas initially anything the operator does has a

lengthy and widespread effect on other variables,

suggesting an uncontrolled and disorganized system,

the effect of practice is for certain effects to become

well organized around some perhaps optimal timing

pattern.

Overall the effects of practice then are to make variables

more independent, and where they are not independent, to make the

timing of the inter-relations more precise. Anyone familiar with

traditional literature on perceptual-motor skills will recognize that

these are precisely the claims that have traditionally been made about

the difference between the skilled and unskilled operator; but they

have been asserteC fai more often than demonstrated, and have never

been convincingly demonstrated for very complex, "naturalistic", tasks.

Information transfer methods appear able to do this.

3. The structure of behaviour under prolonged practice:

7 degrees of freedom.

The results of the previous demonstration suggest that with

prolonged practice a complex man-machine perceptual-motor skill might

show almost complete decoupling, and the emergence of a parallel

processing multivariate system. This again is a common claim made by

writers on skill, but with little or no direct experimental evidence.

To investigate it, two operators were required to perform a realistic

task using the teleoperator. A steel pipe about 40 cm high was

1
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provided, on the right hand side of which (as viewed by the operator)

a hexagonal brass screw-on cap covered a fitting. The brass cap was

approximately 2 cm in diameter. The operator was required to grasp,

unscrew, and remove the nut as rapidly as possible. The data from

one operator were collected on the first five trials on which he

attempted the task, and the data from the other operator after about

10 hours practice at the task. Both were required to perform the

task as rapidly as possible.*

In each case the T*, T, and C* values for each run were

calculated, and then averaged. The means and variances are given in

the tables, and the transmission functions are based on the means.

The additional variable T in the position of the tongs from

fully open to fully closed as the nut is grasped and turned to unscrew
I it.

It was intended to take 5 operators and to obtain data from
each during prolonged practice, but the demise of the Interdat.
computer and the lack of time to implement the PDP-11
system prevented this.
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TASK 3A UNPRACTISED OPERATOR

J Bracketed values are not significant

N = 200, Q4

T secs.

T P R W X Y

T 1.00 .10 .16 (.07) .10 .08 .07
P .08 1.00 .63 .26 .23 .17 .40
R .11 .59 1.00 .28 .22 .19 .35 Mean T*
W (.05) .20 .23 1.00 .15 .20 .18
X .07 .22 .23 .17 1.00 .12 .16
Y .06 .19 .23 .24 .13 1.00 .21
Z .06 .42 .39 .24 .18 .19 1.00

T P R W X Y Z

T .00 .07 .o2 .03 .05 .14 .08
P .00 .03 .01 .16 .02 .07 .07 s.d. T*
R .03 .00 .05 .06 .15 .09 .02 (rounded to
W .01 .05 .00 .08 .06 .08 .03 2 decimal
X .16 .06 .08 .03 .12 .09 .05 places)

Y .02 .15 .06 .12 .00 .08 .14
Z .07 .09 .08 .09 .08 .00 .08

T 0 .2 secs.

T P R W X Y Z

T .29 .19 .24 .14 .13 .12 .11
P .08 .39 .34 .24 .22 .15 .32 Mean T*
R .08 .38 .43 .25 .24 .15 .32
W .07 .14 .16 .42 .13 .12 .13
X .08 .14 .15 .16 .28 .09 .11
Y .06 .15 .14 .19 .12 .40 .16
Z .08 .28 .21 .24 .16 .16 .40

T P R W X Y Z

T .06 .12 .10 .04 .09 .08 .07
P .04 .05 .02 .13 .08 .11 .08 s.d. T*
R .09 .06 .03 .08 05 .14 .02
W .07 .05 .04 .12 .03 .12 .02

X .08 .10 .12 .24 .18 .19 .10
Y .05 .13 .17 .17 .08 .13 .13
Z .07 .11 .10 .10 .09 .01 .09

W



82

TO5 secs.
0.5

T P R W X Y Z

T .15 .30 .36 .17 .14 .12 .19
P .14 .13 .09 .13 .17 .08 .13
R .13 .11 .13 .11 .19 .08 .12 Mean T*
W .08 .10 .10 .24 .17 .12 .07
X .09 .08 .10 (.07) .10 .07 .07
Y .09 .10 .09 .09 .15 .21 .09
Z .17 .11 .07 .12 .16 .09 .14

T P R W X Y Z

T .05 .07 .20 .10 .20 .10 .12
P .07 .04 .05 .14 .06 .09 .05 s.d. T*
R .07 .16 .10 .18 .11 .14 .09
W .07 .15 .12 .13 .08 .12 .07
X .10 .18 .19 .29 .11 .19 .15
Y .07 .08 .08 .21 .17 .16 .13
Z .05 .18 .14 .18 .07 .07 .09

1. secs.1.0

T P R W X Y Z

T .12 .11 .13 .10 .13 .10 .10
P .10 .10 .09 .10 (.07) .07 .07
R .11 (.07) (.08) (.07) (.07) (.05) (.06)

W .07 .07 .09 .15 .09 .11 .07 Mean T*
X .06 (.07) .09 .08 (.07) .07 .07
Y .08 .11 .10 .10 .07 .13 .10
Z .10 .11 .11 .13 (.07) .08 .08

T P R W X Y Z

T .04 .10 .13 .08 .16 .04 .09
P .06 .10 .11 .16 .05 .15 .10
R .06 .13 .04 .14 .08 .09 .16
W .06 .04 .07 .12 .08 .04 .12 s.d. T*
X .13 .04 .11 .25 .12 .13 .07
Y .11 .04 .04 .16 .12 .09 .09
Z .09 .10 .09 .15 .06 .16 .10
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T secs.

T P R W X Y Z

T .09 .12 .13 .12 .09 .08 .09
P .09 .10 .12 .10 .10 (.06) (.07)
R .08 (.09) .10 .08 .09 (.04) .07 Mean T*

W (.04) (.06) (.06) .12 .08 .08 .09
X (.O5) (.07) (.09) (.07) .09 (.05) (.07)
Y .06 .09 .09 .12 .10 .09 .11
Z .10 .10 .12 .10 .09 .08 .09

T P R W X Y Z

T .05 .07 .12 .12 .17 .06 .09
P .11 .03 .05 .12 .08 .11 .05
R .14 .08 .05 .13 .08 .03 .05 s.d. T*
W .10 .05 .03 .11 .11 .06 .07
X 04 .10 .10 .24 .18 .06 .15
Y .07 .08 .09 .13 .08 .10 .05

Z .10 .10 .11 .13 .09 .05 .16

T2.o secs.

T P R W X Y Z

T .08 .08 .10 .10 .10 .05 .09
P .o6 .08 .10 .08 .07 .07 .07
R .04 .07 .09 .06 .07 .06 .06 Mean T*
W05 .05 .05 .10 .07 .08 .08
X .07 .06 .07 .07 .07 .06 .06
Y .06 .08 .08 .08 .o8 .o6 .08
Z .07 .11 .11 .10 .10 .09 .08

T P R W X Y Z

T .05 .06 .06 .07 .16 .07 .05
P .10 .09 .11 .08 .04 .09 .06
R .06 .12 .09 .11 .06 .10 .08 s.d. T*
W .10 .08 .08 .09 .07 .09 .07
X .13 .07 .10 .21 .14 .15 .16
Y .14 .09 .09 .16 .09 .12 .07
Z .10 .13 .06 .12 .14 .16 .08

-Ii .. . .... ... m L L ... .. III I I II I 1 -Il -- I - 1.. ..I l II "
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TASK 3B PRACTISED OPERATOR

N = 200, Q4

T secs.

T P R W X Y Z

T 1.00 (.04) .08 .05 (.04) (.04) (.04)
P (.03) 1.00 .19 (.03) .06 (.02) .08
R .06 .22 1.00 .08 .14 .07 .13 Mean T*
W .05 (.05) .10 1.00 .09 .11 .08

x (.03) .09 .15 .08 1.00 .05 (.05)
Y (.03) (.04) .08 .11 .05 1.00 (.06)
z (.03) .08 .13 .07 (.05) (.05) 1.00

T P R W X Y Z

T 1.00 .04 .16 .05 .13 .04 .13
P .00 .07 .05 .10 .02 .04 04
R .07 .00 .08 .09 .07 .03 .16 s.d. T*
W .05 .08 .00 .10 .02 .03 05
X .10 .09 .10 .00 .10 .12 .13

Y .02 .07 .02 .10 .00 .02 .04
Z .04 .03 .03 .12 .02 .00 .13

TO.2 secs.

T P R W X Y Z

T .14 (.04) .19 (.04) .08 (.05) (.04)
P .07 .06 .06 (.04) (.04) (.03) .07

R .13 .06 .18 .06 .17 (.03) .06 Mean T*
W .10 (.03) (.05) .24 .09 .11 .07
X .10 (.05) (.06) .06 .13 (.05) .04
Y (.04) (.05) (.03) .07 .07 .21 .09
Z .08 (.03) (.04) (.04) .06 (.05) .23

T P R W X Y Z

T .09 .02 .02 .03 .09 .02 .12
P .17 .02 .20 .08 .03 .06 .04
R .08 .09 .02 .15 .03 .02 .04 s.d. T*
W .06 .08 .21 .13 .20 .03 .06
X .01 .03 .07 .24 .06 .07 .23
Y .02 .06 .07 .12 .15 .07 .16
Z .11 .10 .04 .04 .09 .25 .25
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T secs.

T P R W X Y Z

W .06 (.02) .09 .12 .06 .11 .07
x .07 (.06) .11 (.04) .06 (.05) .06
Y .05 (.05) (.03) (.04) .06 .11 .10fZ .07 (.03) (.05) (.04) (.03) (.05) .10

T P R W X Y Z

T .03 .03 .08 .01 .04 .09 .12
P .09 .03 .14 .12 .10 .03 .03
R .06 .04 .05 .09 .10 .03 .07 s.d. T*
W .06 .04 .15 .04 .03 .09 .05
X .12 .04 .05 .15 .06 .07 .22
Y .04 .03 .03 .03 .06 .04 .10

Z .08 .08 .02 .05 .14 .14 .25

T P R W X Y

T (.04) .12 .20 (.02) .12 (.04) (.06)
p (.03) (.03) (.02) (.03) (.03) (.01) (.02)
R .13 (.04) .08 (.05) .07 (.03) (.04) Mean T*
W .05 (.06) (.03) .10 (.03) .07 (.06)
X .13 (.03) (.02) (.04) (.06) .07 (.02)
Y (.04) (.04) (.02) .06 (.04) .08 (.03)
Z .05 (.04) (.03) (.05) (.04) (.06) (.05)

T P R W X Y Z

T .02 .07 .07 .09 .06 .09 .16
P .07 .03 .07 .09 .04 .12 .12
R .04 .08 .04 .08 .10 .08 .07 s.d. T*
W .08 .09 .10 .07 .11 .13 .06
X .08 .09 .08 .09 .06 .08 .04
Y .10 .05 .03 .15 .15 .10 .06
Z .07 .07 .05 .07 .03 .10 .06
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T secs.
1.5

T P R W X Y Z

T .14 (.04) .06 (.03) (.03) (.03) (.05)
P (.01) (.03) (.03) (.03) (.03) (.03) (.03)
R (.03) .06 .19 (.05) .13 (.02) (,05) Mean T*
W (.04) (.05) (.04) .09 (.05) .07 .09
X .05 (.06) .10 .05 .08 (.05) (.05)
Y (.03) (.05) (.05) .06 (.05) .08 .07
Z (.03) (.06) .07 .05 .06 (.05) .06

T P R W X Y Z

T .08 .05 .11 .02 .03 .10 .06

P .14 .03 .10 .14 .05 .09 .05
R .07 .18 .05 .14 .10 .11 .07 s.d. T*
W .06 .06 .10 .04 .12 .05 .12
X .07 .04 .10 .03 .06 .15 .12
Y .03 .03 .13 .03 .07 .03 .12
Z .10 .10 .03 .10 .07 .07 .04

T2. 0 secs.

T P R W X Y Z

T .17 (.05) .08 (.04) .07 (.02) (.04)
p (.02) .07 (.05) (.03) (.04) (.03) (.02)
R .05 (.06) .22 (.03) .10 (.05) (.05) Mean T*
W (.03) (.05) (.05) .21 .07 .08 .08
X (.04) .08 .10 (.03) .17 .05 (.05)
Y (.04) (.03) (.02) .08 (.05) .20 (.04)
Z (.03) (.04) (.04) .07 (.05) (.03) .17

T P R W X Y Z

T .22 .09 05 .10 .09 .12 .02
P .28 .09 .11 .03 .06 .03 .06
R .08 .31 .08 .07 .13 .03 .10 s.d. T*
W .16 .10 .22 .06 .22 .15 .08
X .09 .15 .06 .35 .o6 .11 .06
Y .07 .11 .07 .07 .28 .02 .04
Z .14 I0 .05 .18 .00 .32 .52
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Discussion

The difference between the two sets of data are dramatic,

and confirm the model for skill outlined at the start of this

experiment. In the novice data, as in Experiment 2, most variables

affect all other variables to some extent, and the effects last for

a very long time. In the expert there is almost complete decoupling,

and what strong effects there are are of short duration or have a

well defined peak. Inertial effects have a much shorter duration in

the expert. These differences are also apparent in the selection of

structural digraphs presented above. The present method of analysis

provides excellent evidence for the'classical claims about the nature

of skilled performance, even in a task of a complexity not amenable I
to analysis by conventional methods.

4. The structure of attention, the analysis of static relations in

single trial selective listening experiments

The basic details of this experiment, which was published

by Moray, Fitter, Ostry, Favreau and Nagy (1976), were given in the

introduction, and for full details the original paper should be 1.
consulted. Three very highly practised listeners heard trains of p
pure tone bursts of 100 mecs duration. In the first condition most

of the signals were approximately 60 dB above .0002 microbar, but an j
increment of 1 dB or 3 dB could occur with a probability of 0.1.

One train was presented to one of the listener's ears, and the

other to the opposite ear. The trains were of very different

frequencies. The listener pressed a key whenever he heard a target.

The trains came at 2 signals/ear/second. In the second condition

each train was presented to both ears, so that there was no

azimuthal separation of the sound images: the inputs were binaural,

not dichotic as in the first condition. In the third condition, E
-.



195

Idichotic presentation was used, but one train contained increments
in intensity as before, while the other contained increments in

frequency of approximately equal detectability. In each case half

[the targets occurred at the same moment that a target occurred on

the opposite ear: the targets were not statistically independent.

[Although many other conditions were used in the original experiment,
we here present merely structural digraphs, with their pathways

labelled with the associated value of T* to show how information

[ transmission analysis can be used in one setting which is very

different from continuous perceptual-motor skills.

I The digraphs are shown on the following pages.

[ Discussion

Since the experiment is essentially a series of single

I trials it does not make sense to compute the transmission functions.

i The digraphs are therefore restricted to the "static" (T0 ) relations.

The two conditions with intensity increments on both

channels show little effect of making the targets more discriminable,

other than, as would be expected from increasing the S/N ratio, an

I increase in T* in the relation between each input and its correspond-

ing response, (A - C, B - D). The small but constant input coupling

A I- B reflects the non-independence of targets already mentioned,

and the occasional strong coupling C D a tendency to press both

response buttons at the same time. Almost no significant cross talk

(A - D, B - C) occurs, which is what would be expected from signals

widely separated in pitch, and hence outside each other's critical

Iband. In the third condition however there is a considerable increase
f in the B - C transmission for more detectable targets, but not in the
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I A 4 D. This suggests that making a judgment about pitch can

influence judgments about intensity, but not vice versa.

The use of information transmission analysis on a system

I as simple as this seems to add little to more conventional methods

such as used by Moray et al in their original paper; and as mentioned

in the introduction it is closely related to suggestions by Garner

I and Morton (196f). One might however note that the algorithm which

computes the transmission matrix would have drawn the attention of

j investigators to the need to examine the cross-talk interactions,

a step which was ignored in attention paradigms until rather recently.

.1 (See Moray et al., 1976). Information transmission theory would

therefore have helped to clarify the experimental paradigm at least,

although it really comes into its own with systems of greater

complexity.

III'
!I
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PROGRAM LISTINGS,-

FOE
C
C*****PRCGRAM TO IDENTIiY SUBSYSTEMS BY METHOD OF CONANT
C*****COPIED 5,27,79IC

IMPLICIT INTEmER*2(I-N),INTEGER*2(X),L0GICAL(L)
rIlMENSION T(7,7),NC(eZO) ,X(7,6010) ,MES(35)ME(7
LIM'ENSION MSETl(7)MSET2(7),Hl(7),HIJ(7,7),H2(7)
rIV'ENSICN NROW(7,5) ,NCCL(7.5) ,NF2( 7725)
rIM'ENSION CH12Z(7,7),CHI2C(7,7),CSTAR(7.7)
CCVMON IREC,NS4HIFTL,NT,.X.NC,NROW,N4COL,NF2,-CH.I2Z,CT!I2C,CCTAR
RLCG2(PNX)=ALOG(RN4X)/ALOG(2.0)
.tEFIN'E FILE 10(10,4,U,IREC)
IF=.FALSE.

IT=.TRUE .
10=.T1RU7.] NSHIFT=l
NC =10

C
C*****READ DATA FROM FILE INTO X(IDOF,IT), WHICH IS IN COYMON

CALL. DREAD(mEs,rT)
GET !,5,'NUMBER OF QUANTIZING LEVELS',NQ,LQ
GET m5,5,'NUMBER OF TIME STEPS FOR cHIFT',NSHIFT

C*****WRIT:- CUT TOTAL TIME OF THIS RUN

p. TT=DT*FLCAT (NT)
'*RITE (5, C0 )mT

C*****WRITE OUT TITLE
C

* £90 FORMAT( TOTAL TIME OF THIS R1PN ',F7.2,' SECONDS')
CALL TITIE(MFS,DT,NQ,LT)

C
C*****IF LQ IS TRUE, QUANTIZE THE DATA

IF(LQ)CALL QUANT(NQ)

120 FORMAW( PUS37 DATA SIWITCH 0 DOWN TO COMOPUTE
&FULL MATRIX')
PAUSE
IF(.NCT.LDATS(0))GO TO 265

C
C*****COtMPUTE NORMALIZED TRANSMITTED INFO FOR !NTIRE MATRIX
C

R NT= NT
SUM=RLCG2(1.0)
FNTr1=R NT-i .0
SUM=SUMRNTM1*RLOG2( RNTMl)
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BMIN=RLOG2 (RNT )-(SUM/RNT)
to 15e I=1,7
CALL COUNT1(1,I,1)
CALL NF1CNT(I,1)
CALL ENTEPY(H1(I))
CALL CCUNT1(1,I,2)
CALL NF1CNT(I,2)
CALL ENTRPY.(H2(I))
Hw1=H1(I)
EW2=H2(I)
PUT 5,0,I,il1,Hi2

15e CONT INUE
1O 200,I=1,?
.rC 200 J=1,7
CALL CO'UNT2(1,I,1,J)
CALL, N72CNT(I,J,NQ)
CALL ENTF.PY(=IJ(I,J))
HWIIJ=HIJ(I,J)
PUT ~0IJHI
TR=Hl1(I)+32 (J)-HIJU(I ,J)

T.E(IJ)= )T(I J)=T

22e. CONTINUE
Cp LI. OH Isc(qQ)
to 25?7 I=1,7

225 FCRVAm(5X,12',7(.qX,F7.4))
25e CONTINUE

NRITE (C-,25!)
255 FOP.MAT('Qo'l

to 26 1,7

262? CONTINUE
'9PITE (e 255)
to 2e2 I=1,7

2E2 CCNTLINUr
WRITE(e ,225)

26E '*RITE-(5,2?5)
47= YCPMAT(' PUSH DATA SWITCH 1 TO COMPU'TE TRANS FOR SETS')

FAUSE
IF(.!N0T.ItATS(1))GO TO 400

C
C*****CCrVPUTE NORVALIZED TRANSMITTED INFO FOR THE SELECTED SET
C

GET 5,59,'E-NTER NUMBER CF MEM'BERS IN EACH SET',NSET1,NSET2,NSHIFT
%"jET 5,5,'ENTEF. MEMBERS IN EACH SET',MSET1,MSETZ
CALL TRANS(N~ST1MSZT'1,NSET2,MSET2,TR)
CALL6 TITIE(MES,rT,N0,LF)'
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VR IT E (30(MSET1 (J) J=1,NSETl)
WE IT E(S ,31!3)(MEET2(J),J=1,NSlT2)
WRITE (S .320 )TR

3-2 7OPvATV' SET 1 IS X: ',7(Il 2X))I 10 FORVAT('+',5X,'SET 2 IS X: ,7(Il,2X))
"'e FORMAT('-e'' TR(S1,S2) = ',F7.4)

I GO TO 265

I E12 FO~RVAT(' PUSH DATA SWITCH 2 DOWN TO PRINT ENTROPY FOR ALL SETS')
PAUSE
IF(,.NCT.irATS(2))ti'O TO 520I CAIL EPRINT

5Z9' CCN' INUE

C*****SUBRCUTINE TO READ DLATA FII.E
C

SUECUTINE DPEAD(MES,DT)
It PtICIT INTTGER*2(I-N) INTZGEP.*2(X),LOGICAL(L)
EINTENSION X(7,e00) ,MES(35) ,X1(7) ,MES1(7),NC(600)
C VICN IP.C,NSHIFT,NT,X*NC

- C*****READ V~ESAGE (FIRST 5 RECORDS)
DO 120 I=1,5
NSTOP=I *7
NSTART=NSTOP-6

READ (le,' IEC)MES1

1-O 100 J=NSTART,NS-TCF
K=K+l
'ES(J=MES1 (K)

1ze CONT INUE
C

* C 6****FEAD !UMBEF OF DATA RECORDS AND TIME STEP
- C

"Or-AD (10 ' IEC) NT, rT
C
C*****RBEAD DATA
C

to 2oo IT=1,NT
R-AD (10'IREC)Xl
to 2'? IrOF=1,7

* X(IDCF,IT)=X1(IDOF)
22e CONTINUE

RETURN

C
C*****SUEFOUTINE TO WRITE TITLE
c
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S0BDOUT I NE TI1 ?13(M IQ DTN,LHE AD)
I VFLICIT INT! -G *2(I-N),INTEGR*2(X),LO-ICAL(L)
riY'ENSION MEqS(35),X(?,600),Nc(eeg0)
CCMCN IFEC,NSHIFT,NT,X,NC
IF (LBEAD )R ITE (8, 100)

120 FCBMAT('1','IDENTIFICATION CF SUBSYSTEMS BY'
$' VETEOD OF CONANT')

1EO FORMAT(W0)

WRITV(E.0Z)(VSJ.=,5

22e fORVAT('e',35=A2)
WEFITE (e ,~ )L0 T, NQ, NSHIFT
'4R IT 3(8 ,15e

320 FORMAT( TIME STEP ' F.,,# QUAN' IZINI LEVELS '

&M3,, CF TIME STEPS FCR SHIFT =',12)

C
C*****cSUEPOUTINE TO QUAMTIZE DATA
C

-UROLTINE QUANT(NQ)
im~PLICIT INTEGER*2(I-N),INTEG-ER*2(X),LO-4ICAL(L)
rIt'!NSIOCJ XM'IN(7),XMAX(7),x(,ee),DIV(?),X1(7)
DIMFYNSI' P FZ(7) .THR SH (7CNIST (7)
CCK CN T?EC,NSHI7T,NT,X,NC
rATA THR!S3/1000.,3*2.0175,3*0.1/

..4T 95,'INTEF THFESHOLD VALUES',HFSi

rC eoIT=1,NT
rO 2V1=1,7

IF(IT.G'T.1)GO TO 150
X 1N(I=XI,IT)

XMA.X(I)=X(I,IT)

I'F(X(I,IT).'rT.XMINl(I))XMIN(I)=X(I,IT )
2Z2 CNT INUE

/,*****IF TCTAL PANGE IS LESS THAN THE THR.ESHOLD FOR
C A POARTICULAR DEGREE CF FREEDOM, SET' ALL DATA
C TCINTS FQUAL TO ZERO
C

rc 2E7 i=1,7
FANkG--(XMvAX(I)-XMlN(I))
.APS(RANG) /CONST(1)
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IF(LrATS (3 ) )WRITE(5,225)I,X IN( I) ,XMAY (I) ,FANGE,,CCNcT (I)
225 FORMAT(I2M 1-4101
250Z CONTINUJE

C
j C*****SCALE EACE flATA POINT e,.LE.X.LT.Nn.

C
RN = NQ
r0 300 I=1,7

l~e rIV(I)=FLOAT(XMAX(I)-XMIN(I))/RwO
r0 400 I'T=l,NT
U~ 350 1=1,7IX Ii )=X( I, IT)
F=X( T, IT)-XMIN(I)
.X(1,r&Ii)=PZ(I)*R/DIV(I)

35Z CONT INUE
IF (LDATS (3A) )',IT7(5 ,375) (Xi(JK) ,X (JK, IT) ,JK=1,7)
IF(trATS(l ))WRIT-E(9376)(X(JK,IT),JK=1,7)

376 FCR!'ATk'7I7)
40'0 CON!TINUE

FETU RN

C*****S'JR CUTIN2 TO COUNT OCCURANCFS OF EACH PATTERN

C 10OP A CCI N G Z SE T
C

SZEFOUTI'E C'NT1(NSET,MSET,112)
imriFLICIT INTEGER.*2(I-N),INTEGER*2(X),LOQICAL(L)
rI ZENSICN X(7, 6ZZ),NC(6ZZ),VSET(?)
CO 'MN I--EC,NEHIF.T,NT.X.NC
£0 122 I=1,NT

120 NC(I)=0
IF(Il2.E7Q.Z)'O TO 150

* ISTAR ?=1
ISTLCP=NT-NSHIFT
(30 TO 175

150 ISTAFT=1+NSEIFT
ISTOP=NT

175 7CC 500 IT=ISTARTISTCP
IP=ISTART-1

20e IF=IP+l
ISAMY= .T?'J!.

2E0 1=1+1
ILF=r 'EX(IDFI)..XIFI)SAE=AL.

IF(.NCT.lSAMT)GC TO 22e
iF(i.I.-.NSET)GC TO 252

!2Z CONTINUE
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I-.(LDPATS (4) )VPRITE(5,55)(IC(I) JlNE4 ,1

-OP"AT(' NC',I3,' = '.13)j
6ZO CCNTINUJE

IV'***-~lPUTNZTO COUNT # OF OCCUPANCES. OF EACH PATTERN

SUECUTN1,CC'UNT2(NSET1,VS7TtlNcS7T2,MSZT2)

ltFlI'CIm INTTGEF.*(IN),INTEGEZR*2(X),LOGICAL(L)
DIrKENSION X(7,600),NC(600),YSvcET1(7),MSET2(7)
CCVVCrN IRIC,NSHIFT,NT,X,NC
rO leo I=1,NT

1 NTi=NT-NS5IFT

*~r toe5 IT=1,NT1
IT = IT +N S -IlT
Ip o

2?o IP=ILP+1
IPS=IP+NSl-IFT

ISCZ(F,Ip.N.(DT)SM=ALE

250 t.NE1GOT 5

TIflSE..T21( I)

IF( .NCT.1SAM!E)"O TO M~
I?-(I..T.NSET1)GO TO 20

3120 CI=I UE
Ir ( ir 'T ())WI( 2)( IST(),=,NE1

I?(LDAT? (4) )WPIT!(5,526)IME2%yjlN 2

Ee C CNT I NUE

F NE
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C'***SUIRCUT 'LE TO CMIFUTE ZNTP.CPY

SUEROU T'INE ENTRPY(E)
IX~IC'2INTEIR*2(I-N) INTF!r%*2(X)I ~~rrvi'FsioN (,~),c6e

CO!VCN IrEC,NSHIFT,NT,X,NC
xRLCG2 (RNX )=AL"O'(RN ) /ALCG (2 .Z)

EC in I=1.NT
P NC=NC(I)
IF(NC ( I ) N T.)Sz'JMv.SUrM+PNC*PLOG2 (.NC)I170 CO0NT INUE
?NT=NT-NSHI FT
.H=?LCG2 (PNT )- (SuM/PMiT)

iNE

C'%****SU':.CUTINZ TO C0!.FPTT! TRANSMITTED INFOR 'ATIICN
C FOP 2 SITS

STJPPUTINE TRANS(NSET1,M',SET1,NS!7T-2,MS ET2,T1l2)
IIMPLICIT INT'FGER*2(I-N),INTEIyER*2(X),LOGVICAL(L)

CO~'MCN IRZC,NSHIFT.NT9X.NC
CALL COUNT1(NSET1,-MEET1,1)ICALL ENTPPY(Hl)
CALL COt'NTl(NSET2,MSET2,2)
CALL1 E-N;FPY(H2)
CALL COUNT2(NSET1,MSET1,NS!.T2,MSZT2)
CALL ENTrRPY(H12)
T112=31 +F2-E12
T12=Tl2/H2I P FITUP N
F Nr

C
C*****SUPcrVTINE TO COMPUTI AND PPINT !FTROPIES FOP ALL S!TcSIC

SUIPOUTINE HRINT
IYELICIT INTEGEP.*2C1-N) ,INMTEGER(X),LCGICAL(L)
rIV'ENSICN X(7,6e0),NC(6@e),MSET(7),MSET7(7)
CO!'PCN IEC,NSEIFT,NTX,NC
rATA VSET?/1,2.3.4.5.6.7/

C

C*****COPL'tTE ENTROPIES -7OP ALL 1 MEMBERR SETS

MvSrT ( ) -I
CALL CCUNM'1(1 tMSET,1)

CALL !NTPY(HS
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ENTRCFY FCR ALL TWC MEMBER SETS

!C 20?' 1-1 .6

tC 2Zl? J=IP1,?7

CPIL COE!N'1(2,MSET,l)

'AccV" I NUT

%m,***CCP',T3ENTROPT OF ALL 3 M!MBER SETS

rc 30* 1-1.!

to lz J=i,-l,6

EC 3-22 T=JF 1,.

Y'SST (2)1
VSTT (2 -J~

CA 1l C CUNT I( 3 Y -T, 1)
CALL !NTRPY(R)

32e CCNT INUT 7

m**E C 0 ? T!q ENTROPY POP ALL 4 VEMEE SITS

to 4eO 1=1,4
IP1=I+1
#"O 4e3 J-IP1,1-

to 4ez I-3P1,6

rO, 400 IL=KP1,7

PdS IT (4 )Il
CAII CCUNT1(4,MSET,1)

~~L
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I CAIL INTRPY(E)

4i CONTINUE

C*****CrtvFTET SNTPCPY FOE 5 MEMTBIR SETS
Cii to 5op 1-1,3

rc 520 J=IP1,4

rO 502 K=JP1.5

rc 5,., iI=Kp1,6

Ir 522 V+=ILP1,7

1,ST' 2 )J
1VSET (4)=Il

CAILl COUqNTl(5,MS'ET,l)
CAIL ENTPPY(H)

iz CONTINUE
C
rC*****COV'P'JTEV- ENTROPY -TOP 6 MEMEE?. SETS

VRIT 1( S ,10 )I tO 601 1=1,2
Ip1=I.1

JP1=j,1
".1ce~eo 3PJ1.4

LOI IL=11?1,5
ILF1=Il+l

tO E03 N=!MP1,?

VS!T 1 -J

'SFT (E)=

I~lCUT( STl



110

e~ CONTINUE

C** **C ivvT! ENTROPY ROB TEE 7 tvErPER SET

WITE(e.10)

CAII COUNT1(7,MSTET7,1)
CAIL ENTRP!(H)
WITS(E,fW3(MSET7(J9). ,JK 1,9H d

SENL
//rup

CI SUECYS )
*=C 41c

*TC2ILtIB
*AST

FI CCN.DATA A

SUSSIF
TYPI



C****'.U3RCUT"INZ TO PRODUCT A VECTOR CONTAINING THE
C NUr'EMR'CF CCCURFANCES (,%F EACH OF T21 NC POSSIBILITIES
C CCF A SINGLE DEGP.E! OF 7REEOM
C

cUPBCUTINE NFlCNT(IDF,112)
IVP'LICIT! INT!4'!R*2(I-N).INTEGER*2(.X),LOGICAL(L)
DI ENSION X(7,e00),NC(6-00)

I COHV'C' IPZC,NSaIFT.NT,X,NC,NPOW',NQOL
ro ii~ i=1,NT '
I7(NC(I).EO.0)G0 TO 100
ID=X ( IfF.I )+1
IF(112.E:.1)NROW(IfliF,ID)-NC(I)
IF(112.EC*.2)NCCL(IDF.ID)=NC (I)

C
C*****EUICUTINE TO PRODUCT A TATLE OF OCCUJPANCIES (NQ*NQ, WHER3
C NQ IS THE NUMP!?. OF -CUANTIZING LEVELS) FOP. TiO DOY'S
CI SU2POUt"INS NF2CNT(IDFI.IDFJ,NO)

IMPLICIT INTEG!P*2(I-N),INTEG!rR*2'(X),LOGICAL(L)

rI ENSICN NF2(7,7,2fl,NROW'(7,5),NCCL(7,5-)I COI'VCN IREC.NSHIFT,NTI,XNC.N.RCWNCOL,NF2
to 1e3 I-1,NT
IF(NC(I).EC.e)GO TO leZI I1DI=X ( ItI,I)+i

1e,' CONTIN'JE
P !TUPN

C*****SUBFCUTIN1 TC CALCULATE TmHE CHI SCRUARED STATISTIC AND

c TEE SCIEMALIZD C STATISTIC

C SUIPOt1TIN CHISQ(NQ)

I tI 'ENSICN x(?,600),NC(600)
r~t'!NSION NJOv(79 ) NCCL(7 5),NP2(7 7 25)
tI"'SNSICN CH12Z(7,75,CHI2C('?,7),CSTDEb?,7)[COfv'MC% IF!C,NSH[IFT,NT,XNC.NROWANCOL,NE2,C"UI2Z,CHI2CCS-TAP
rc lee lENJ-i,?CE2(fIDJ)71
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leZ CO0NT I NUT

EFAC FCAT (NT)/ FLOAT( NQ*NC)w

tO 220 ItDFI=1,7
H0 20-1 IfF =1,7
r0 20? IQ=',NQ
to 20 JC=1,NQ

PCCL=NCOI(IDFJ,JQ)

- T SFAC= (RRCW+.COL) /RNT

CH121C( IDFI ,IDFJ )=CF12C( I DF IF
&((RmzTLt-cFAC)**2)/SFAC

cc.T A. ( itrF i ,,,F J )= cF Ac
12 2 CONTINUE

FNt

st C~ItIp
//TYPE
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The structure of naturalistic behavior: information transmission
and the analysis of etholopical data.

To show the potential range of the techniques described in this report

we ay apply them to some ethological data. It is comon in ethology to

record several or many variables over time in the hope of discovering

significant relations among them by post hoc analysis of events which occur*

naturally rather than under the constraints of experimental conditions when

only one or two independent variables control the behavior. The problem has

always been to reduce the large amount of data obtained in a way which allows

the detection of the important relationships. From the earlier discussion

it will be apparent that Conant's method may offer a new way of approaching

this problem.

The data to be analyzed were obtained by Nash and Chamove in the

Primate laboratory at the University of Stirling. Stump-tailed macaques were

let loose in a large living area in groups, and allowed to interact with each

other while foraging for food in the sawdust which covered the floor. A sys-

tem of classification allowed their behavior to be recorded by an observer,

who entered a discription of what the animals were doing on a keyboard every

time a change in the behavior was observed. Observations were thus made not

at equal time intervals, but at the boundaries between "Opisodes" of behavior.

(Real time was also recorded, but will be disregarded in this analysis.) Two

main groups of variables were noted. The first were three qualitatively dif-

ferent types of behavior, Exploratory (E), Affiliative (A), and Self-directed

(S). The second were a series of behavior patterns which were known from

earlier work to correspond to increasing intensity or activity levels, and

these will simply be referred to as behaviors 1,2,3,4 and 5, from the least

amount to the most amount of activity. Our aim is to discover the causal re-

lations, measured over episodes, among the eight variables.

Each variable was measured as a binary variable, 1 if the behavior was

present during the episode, 0 if it was absent. We therefore have an 8-varia-

ble, Q - 2 collection of data, and results of analysis at T - 1, 2, & 5 will

be given. The reader should remember that the time delay here refers to the

nmuber of episodes, not time in seconds. A more recent version of Conant's

method (Conant, 1980) was used to analyze the data. This allows not merely

the calculation of transmissions between pairs of atoms to be calculated, but

searches for higher order molecules, and determines the most important molecule
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at each molecular level. Two ways of choosing the minimum complexity to use

in explanation are relevant. The value Tmax is found by the program as the

highest amount of transmission regardless of how many source variables are

used to explain the entropy of the target. If the percentage of Tmax ex-

plained by simple molecules is high, then higher order molecules need not be

invoked; and Conant also shows how the minimum transmission needed to exceed

chance can be calculated from the number of variables, the run length, and

the Q level. In the present case, this value is approximately 0.1. We are

therefore looking for T* values above 0.1 which explain as much of the relevant

Tmax as possible. The length of the data was 115 observations, and with Q set

to 2 and k to 8, this means that we cannot make a reliable estimate of mole-

cules bigger than two atoms. (That is, we can see reliably whether (X,Y)

affects (Z) to a greater extent than (X) or (Y) singly, but the estimates of

(W,X,Y) are unreliable.)

The program as implemented has a limit on the amount of memory which is

available for performing frequency counts on the combinations of variables, and

this was exceeded when all eight variables were simultaneously used both as

sources and targets. So the following results are made up of sebsets of the

variables chosen in several different ways to find an overall picture. It

would of course be relatively easy to increase the amount of memory avialable

for subsequent analyses.

Results

1. Structure of behavior at T 1 1: the relation between

behavior in the current dpisode and that In the next episode.

Source Variables Target Variables Relations with T*>0.l

1. E,1,2,3,4,5 Ej.,2,3,4,5 1,5}-{E){5}-4{5}

{1,5}H{41
[5)-o-{21

2. E,A,S, E,A,S {E-{S)
{A, S } {A}

(S}-.{E
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Source Variables Target Variables Relations with T* 0.1

3. E,A,S,1,2,3,4,5 E,A,S,I,2,3,4,5 {E,1,21-{51
{S,1,4}-{41

{S.1)-,-{21
{E,4} -,{S}
{A,S} {A}
{s,4} {E}

4. A,S,I,2,3,4,5 AS,I,2,3,45 {S,51}{51
{S, 1,5}{4}
{s,51-{2}
{A, 5} {s}

{A, S} {A}

.5. E,A,S,I,2,3,4 E,A,S,I,2,3,4 {S,I,4}+{4}
{S,1}+{21

i {E,4}+{S}
(A, S} {A}

{S,4} {E}

6. E,A,S 1,2,3,4,5 {E,A}+{51
{s} {4}
{S} {2}

A number of relations are striking by either their presence or their absence. At

the midrange levels of activities, (2) and (3) appear hardly at all. In fact

(3) never appears as a target, that is as a variable whose state is driven by

other variables; and (2) never as a source, or driving variable. Note that

this does not mean that such states do not appear in the data. But if they

occur they are neither significant in determining the occurrence of other

states of the system, nor as the effect of other causes. Their occurrence

would have to be regarded as a random occurrence, rather than as a significant

event. And the fact that they do not even occur as significant features of

molecules means that they can probably be disregarded in any explanation of

behavior.

On the other hand low levels of activity do play a significant role, and

high levels certainly do, both as independent atoms and as binary molecules.

This is shown by the relations which keep recurring, such as (5) (5),

(l,5)'(4); (S,5)-(5); (S,1,5)-(4); (A,5)+(S); (E,4)-(S); etc. Most of the

effects appear to require binary molecules rather than atoms to account for

the system's behavior, suggesting the presence of much interaction and tight

coupling among variables.

Amon$ the ain variables Affiliative behavior plays little role, except
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for tending to produce more of itself (A,S)-'(A), unless it is coupled with

(5) when it plays some part in determining the subsequent occurrence of (S).

On the other hand (E), Exploratory behavior, is a strong determinant of sub-

sequent states, and S even more so, the latter appearing again and again in

different molecules. Overall then, self-directed behavior, especially when

at a high level, is the dominant feature determining what will happen in the.

next episode, with Exploratory behavior next, although both are modulated by

either low or high levels at which they occur, but not by intermediate levels.

2. Structure of behavior at T = 2: the relation between behavior now

and at the next but one episode.

At this reaction time lag the significant relations are fewer and weaker.

It should be recalled that while it is only one episode later, this may reflect

quite long periods of real time.

Source Variables Target Variables Relations with T*>O.l

1. E,A,S 1,2,3,4,5 {SI){5}
{EI}-+{21
{s}- -{1}

2. 1,2,3,4,5 E,A,S {4,5} {S}
{4, 5} {E}

3. 1,2,3,4,5 1,2,3,4,5 {51+{5}

4. E,A,S E,A,S {S}-'{S}

{SI}{E}

Almost the only reliable relations are due to (S). If an animal is

showing self-directed behavior now, that fact is important in determining

what will happen two episodes hence, and if the activity level is high (4,5),

that too is important. There are very few binary molecules. Affiliative

behavior appears neither to have an effect nor to be affected by events two

episodes earlier.

3. Structure of behavior at T - 5: the effect of current behavior on

behavior five episodes hence

Almost no significant causal links exist so far into the future. If

(E,A,S) is used as source and target, no transmission is found. If levels of

activity are so used, the only relations are (1,4))-(3) and (l)-)-(2), sugges-

ting that a long time hence more moderate levels of activity are caused by

whatever levels are current. The effects are, at this range, slight and un-

interesting.
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Overall, Conant's methods can clearly throw light on ethological data,

and go some way to helping the researcher find his or her way through the mass

of possible interactions in naturalistic data. It can detect relations be-

tween prothetic and metathetic sets of variables. It may suggest changes in

methodology: for example, probably it is unnecessary to measure levels of

activity at more than three levels, low, medium and high, and perhaps only the

extremes are important, although a bigger data base would have to be processed

to make sure that these findings were general.

5. Verification of proposed structures using molecular transmission

In the extract from Conant's paper quoted in an earlier chapter, it was

said that a proposed structure could be "verified" by summing all the trans-

mission in subsets, and comparing the sum with the transmissions between sets.

Conant (1980) has now developed a more sophisticated program which works its

way through the possible molecular structures, searching at each level for the

most powerful molecules. Thus it takes a particular target variable, and dis-

covers which atom has the strongest effect on its behavior. It then finds which

two-atom molecule has the strongest effect (a molecule which may not contain

the atom from the earlier level). It then looks at ternary molecules, and so

on. At each level it calculates what proportion of the maximum possible trans-

mission is accounted for by the proposed molecule, and,as mentioned in the last

section, when a molecule is found which accounts for the majority of Tmax, that

can be taken as the causal agent. In a later version of the program, the chi-

square significance for each molecule is calculated, and also the chi-square

significance of the addition due to going to the higher level of complexity.

We will end this monograph by reconsidering the data on Task 1A, drawing

a line with the master-slave manipulator, using the new method. Because of the

amount of memory required to examine 6 variables each at Q 4, the data were

collapsed to Q - 2. As will be seen from the appendix, the mose likely effect

of this is to reduce the number of 7ignifican. transmisstions. The new analysis

was run at - 0.2 and - 0.5 seconds. Owing to the limits on reliability im-

posed by the run length and the Q values for 6 variables, only binary molecules

will be shown. Fortunately, as might have been expected from the earlier method,

these account for the far greater proportion of Tmax in almost all cases. The

results are given in the next two tables.
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STRUCTURAL RELATIONS FOR TASK LA, Q - 2, T - 0.2 secs.

Source Variables Target Variables Normalized
Transmission

T*

P P 0.52 75%
XZ P 0.61 88% #
X R 0.61 87% #
XZ R 0.64 93%

W W 0.74 89% #
WY W 0.78 93%

X X 0.56 82%
XP X 0.62 90% #
Y Y 0.37 72Z
YZ Y 0.44 86% #

Z Z 0.53 81% #
ZP Z. 0.56 86%

The hash marks indicate the variable which has been taken as an adequate expla-

nation of the target behavior. The binary molecule was only adopted if it im-

proved the % Tmax by more than 5%. We then have the following relations as

required to explain the behavior of the system:

(XZ) (P): (Px) () : (X) (R): (YZ) (Y):

(W) (M): and (Z) (Z):

or, using the same kind of digraph as before,

G Y R

If this is compared with the results of the earlier analysis, and bearing

in mind that we have changed the quantal level because of the memory con-

straints in the program, there is reasonably good agreement. Indeed the main

reason for the discrepancy is the extra structure which is revealed by a pro-

gram which detects the influence of the molecules rather than relying on the

first approximation given by the earlier method, which was restricted, in the
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form we used it, to investigating the structure present among atomic variables.

For example, in the earlier method no atom seemed to drive (Y): but the more

sophisticated method shows that there is a binary molecule which does drive Y,

namely (Y X). Similarly, there was no atomic relation between X and P, but

there is a binary variable (XZ) which drives P and includes X, and a binary

molecule which includes P and drives X, namely (P X). These relations were

not apparent in the earlier structure.

STRUCTURAL RELATIONS IN TASK 1A, Q - 2, T - 0.5 secs.

Source Variables Target Variables Normalized Z Tmax
Transmission

T*

R P 0.17 52%
RZ P 0.23 78Z #

x R 0.27 64%
XY R 0.34 82% #

W W 0.59 82% #
WY W 0.64 88Z #

X X 0.22 54Z
XY X 0.33 79% #

Y Y 0.05 no significant effect
YX Y 0.08

Z Z 0.18 46%
WX z 0.26 68% #

With the longer delay, the similarity to the earlier analysis is not as

great as at the shorter delay. The importance of molecular sources rather

than atomic sources is very evident. There is no significant effect on (Y) at

at delay of 0.5 second, and all the other driving variables are binary mole-

cules, not atoms. We have
(RZ) '(P) : (XY) C-X) : (XY) P(R) : (W) *(W) :

and (WX)+(Z)

Z PR
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CONCLUSIONS

The original motivation for applying Conant's method of analysis to the

investigation of behavior was straightforward: there is a chronic problem in

investigating man-machine interactions involving manipulators or teleoperators,

and that is how to define movements and actions, and it was hoped that infor-

mation transmission would show the relation between different degrees of free-

dom in such a way as to aid in the rational allocation of control between the

human operator and preprogrammed automatic control. It is only fair to say

that such an objective has not been attained. However, the properties of infor-

mation transmission theory as a way of discovering structure in multi-degree-

of-freedom systems, and more generally in multivariate systems seem certainly

to merit further study. In this report we have seen that it can be used to

reveal complex behavioral interactions in a way which is revealing and can

lead to further research. For example, it is possible to see how a skill de-

velops, and to map the change from a set of tightly coupled strongly inter-

fering variables to an increasingly parallel system, something which has been

thought often to be the case, but which has never been seen directly before.

In its application to ethological data, the method certainly seems to have po-

tential. A case was described in which a set of eight variables were used to

describe animal behavior with no preconceptions as to what if any inter-

relations there were among the data, and Conant's method clearly can show the

way to achieve a meaningful reduction of the vast amount of data in such a way

that structural and causal relations among the variables emerge.

In the course of this work several unsolved problems in information trans-

mission theory were solved, such as the problem of how to decide on an appro-

priate level of quantizing data, and appropriate statistical measures of

significance, and Conant himself has taken these developments further. Pro-

bably the most difficult problem remaining is the best way to display the results

in cases where there are high order interactions. Minor problems arise due to

the very large amount of computer memory which i s required when more than about

five variables are sampled at four or more quantal levels.

On the credit side are the claims that Conant originally made. This tech-

nique has close relations with analysis of variance, with Markov analysis,

with cross-correlational analysis of time series, and perhaps w i th factor

analysis. It has some of the characteristics of a general, non-parametric

multivariate regression method, with the additional advantage of being orien-
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tated to time dependency and causalLty. There is the fact that it detects

relations in some cases where classical correlation does not, and it seems,
at least to the writer, to give the user more of a feel for causality in the

structure of behavior than analysis of variance, at least when higher order

interactions are present, although this may be a matter of taste to some

extent. Conant is actively developing the technique further, and there is
little doubt that it is worth psychologists' time to keep watch on this,

and that of other such attempts by systems scientists to find ways of analyzing

complex systems. There are strong reasons to think that the application of

behavioral science to many areas of high technology requires a method of handling

more complex sets of data than have been customary in psychology heretofore.

I
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